Skip to main content
Log in

Synergy of in-situ heterogeneous interphases tailored lithium deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The implementation of a robust artificial solid electrolyte interphase (ASEI) to replace the unstable natural SEI can regulate lithium deposition behaviors and avoid the safety hazards caused by dendrites permeation in lithium metal batteries. Despite of devoted efforts in tailoring components of ASEI, the intrinsic mechanism of interfacial synergy within the heterogeneous interphases has not been well elucidated yet. Herein, we show that the lithium plating/striping behaviors can be substantially enhanced (over 900 h with an overpotential of less than 20 mV at 1 mA·cm−2 in Li∣Li symmetric cells and 146 cycles in anode-free cells) by regulating the heterogeneous interphases. This favorable ASEI composed of LiF and Li3N components can be in-situ generated during cycling by large-scale fabricated fluorinated boron nitride coatings. Further, the synergy of each heterogeneous component within ASEI was explored theoretically and experimentally. Li3N has high adsorption energy and low ion diffusion barrier, which facilitates the transport of lithium ions and avoids its local accumulation to evolve into dendrites. Both the substrate and LiF are interfacially stable with high electron tunneling barriers, preventing the electrolyte decomposition and parasitic reactions. Finally, the high stiffness of the boron nitride also ensures lithium dendrites are suppressed once they grow, providing a stable environment for long-term cycling of lithium metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, Y.; Yang, H. J.; Chang, Z.; Deng, H.; Li, X.; Zhou, H. S. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. Nat. Energy 2021, 6, 653–662.

    Article  CAS  Google Scholar 

  2. Lee, M. J.; Han, J.; Lee, K.; Lee, Y. J.; Kim, B. G.; Jung, K. N.; Kim, B. J.; Lee, S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217–222.

    Article  CAS  Google Scholar 

  3. Zhang, Z. W.; Li, Y. Z.; Xu, R.; Zhou, W. J.; Li, Y. B.; Oyakhire, S. T.; Wu, Y. C.; Xu, J. W.; Wang, H. S.; Yu, Z. A. et al. Capturing the swelling of solid—electrolyte interphase in lithium metal batteries. Science 2022, 375, 66–70.

    Article  CAS  Google Scholar 

  4. Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Meng, Y. S.; Shao-Horn, Y.; Gallant, B. M. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 2021, 6, 951–960.

    Article  CAS  Google Scholar 

  5. Zhou, G. M.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319.

    Article  CAS  Google Scholar 

  6. Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

    Article  CAS  Google Scholar 

  7. Wu, H.; Yao, Z. G.; Wu, Q. P.; Fan, S. S.; Yin, C. L.; Li, C. L. Confinement effect and air tolerance of Li plating by lithiophilic poly(vinyl alcohol) coating for dendrite-free Li metal batteries. J. Mater. Chem. A 2019, 7, 22257–22264.

    Article  CAS  Google Scholar 

  8. Niu, C. J.; Liu, D. Y.; Lochala, J. A.; Anderson, C. S.; Cao, X.; Gross, M. E.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 2021, 6, 723–732.

    Article  CAS  Google Scholar 

  9. Paul, P. P.; McShane, E. J.; Colclasure, A. M.; Balsara, N.; Brown, D. E.; Cao, C. T.; Chen, B. R.; Chinnam, P. R.; Cui, Y.; Dufek, E. J. et al. A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries. Adv. Energy Mater. 2021, 11, 2100372.

    Article  CAS  Google Scholar 

  10. Boyle, D. T.; Huang, W.; Wang, H.; Li, Y.; Chen, H.; Yu, Z.; Zhang, W.; Bao, Z.; Cui, Y. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 2021, 6, 487–494.

    Article  CAS  Google Scholar 

  11. Fedorov, R. G.; Maletti, S.; Heubner, C.; Michaelis, A.; Ein-Eli, Y. Molecular engineering approaches to fabricate artificial solid—electrolyte interphases on anodes for Li-ion batteries: A critical review. Adv. Energy Mater. 2021, 11, 2101173.

    Article  CAS  Google Scholar 

  12. Hu, Z. L.; Wang, C.; Wang, C.; Chen, B. B.; Yang, C. P.; Dong, S. M.; Cui, G. L. Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability. InfoMat 2022, 4, e12249.

    Article  CAS  Google Scholar 

  13. Liu, Y. H.; Sun, J. M.; Hu, X. Q.; Li, Y. F.; Du, H. F.; Wang, K.; Du, Z. Z.; Gong, X.; Ai, W.; Huang, W. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 2022, 94, 106883.

    Article  CAS  Google Scholar 

  14. Wu, H. P.; Jia, H.; Wang, C. M.; Zhang, J. G.; Xu, W. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. Adv. Energy Mater. 2021, 11, 2003092.

    Article  CAS  Google Scholar 

  15. Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

    Article  CAS  Google Scholar 

  16. Chen, M.; Zheng, J. H.; Liu, Y. J.; Sheng, O. W.; Ju, Z. J.; Lu, G. X.; Liu, T. F.; Wang, Y.; Nai, J. W.; Wang, Q. et al. Marrying ester group with lithium salt: Cellulose-acetate-enabled lif-enriched interface for stable lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102228.

    Article  CAS  Google Scholar 

  17. Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid—electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

    Article  CAS  Google Scholar 

  18. Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 2018, 4, eaau9245.

  19. Ma, X. X.; Shen, X.; Chen, X.; Fu, Z. H.; Yao, N.; Zhang, R.; Zhang, Q. The origin of fast lithium-ion transport in the inorganic solid electrolyte interphase on lithium metal anodes. Small Struct. 2022, 3, 2200071.

    Article  CAS  Google Scholar 

  20. Zhang, Q. K.; Liu, S.; Lu, Y. T.; Xing, L. D.; Li, W. S. Artificial interphases enable dendrite-free Li-metal anodes. J. Energy Chem. 2021, 58, 198–206.

    Article  CAS  Google Scholar 

  21. Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

    Article  CAS  Google Scholar 

  22. Ye, S. F.; Wang, L. F.; Liu, F. F.; Shi, P. C.; Wang, H. Y.; Wu, X. J.; Yu, Y. g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode. Adv. Energy Mater. 2020, 10, 2002647.

    Article  CAS  Google Scholar 

  23. Tan, J.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 2021, 11, 2100046.

    Article  CAS  Google Scholar 

  24. Su, H.; Liu, Y.; Zhong, Y.; Li, J. R.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Stabilizing the interphase between Li and argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy 2022, 96, 107104.

    Article  CAS  Google Scholar 

  25. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  26. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993, 48, 4978.

    Article  CAS  Google Scholar 

  27. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  28. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  29. Venkateswarlu, G.; Madhu, D.; Rani, J. V. An effective performance of F-doped hexagonal boron nitride nanosheets as cathode material in magnesium battery. Mater. Chem. Phys. 2019, 226, 356–361.

    Article  CAS  Google Scholar 

  30. Bai, Y. Q.; Zhang, J.; Wang, Y. F.; Cao, Z. Y.; An, L. L.; Zhang, B.; Yu, Y. L.; Zhang, J. Y.; Wang, C. M. Ball milling of hexagonal boron nitride microflakes in ammonia fluoride solution gives fluorinated nanosheets that serve as effective water-dispersible lubricant additives. ACS Appl. Nano Mater. 2019, 2, 3187–3195.

    Article  CAS  Google Scholar 

  31. Radhakrishnan, S.; Das, D.; Samanta, A.; de los Reyes, C. A.; Deng, L. Z.; Alemany, L. B.; Weldeghiorghis, T. K.; Khabashesku, V. N.; Kochat, V.; Jin, Z. H. et al. Fluorinated h-BN as a magnetic semiconductor. Sci. Adv. 2017, 3, e1700842.

  32. Zeng, X. H.; Xie, K. X.; Liu, S. L.; Zhang, S. L.; Hao, J. N.; Liu, J. T.; Pang, W. K.; Liu, J. W.; Rao, P. H.; Wang, Q. H. et al. Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA·cm−2 and 30 mAh·cm−2. Energy Environ. Sci. 2021, 14, 5947–5957.

    Article  CAS  Google Scholar 

  33. Liu, Y. X.; Hu, R. Z.; Zhang, D. C.; Liu, J. W.; Liu, F.; Cui, J.; Lin, Z. P.; Wu, J. S.; Zhu, M. Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 2021, 33, 2004711.

    Article  CAS  Google Scholar 

  34. Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187–196.

    Article  CAS  Google Scholar 

  35. Yao, Y. X.; Zhang, X. Q.; Li, B. Q.; Yan, C.; Chen, P. Y.; Huang, J. Q.; Zhang, Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2020, 2, 379–388.

    Article  CAS  Google Scholar 

  36. Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 2020, 11, 93.

    Article  CAS  Google Scholar 

  37. Nanda, S.; Manthiram, A. Delineating the lithium—electrolyte interfacial chemistry and the dynamics of lithium deposition in lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003293.

    Article  CAS  Google Scholar 

  38. Cheng, H.; Gao, C.; Cai, N.; Wang, M. Ag coated 3D-Cu foam as a lithiophilic current collector for enabling Li2S-based anode-free batteries. Chem. Commun. 2021, 57, 3708–3711.

    Article  CAS  Google Scholar 

  39. Nanda, S.; Bhargav, A.; Jiang, Z.; Zhao, X. H.; Liu, Y. Y.; Manthiram, A. Implications of in situ chalcogen substitutions in polysulfides for rechargeable batteries. Energy Environ. Sci. 2021, 14, 5423–5432.

    Article  CAS  Google Scholar 

  40. Sun, J. M.; Liu, Y. H.; Liu, L.; He, S.; Du, Z. Z.; Wang, K.; Xie, L. H.; Du, H. F.; Ai, W. Expediting sulfur reduction/evolution reactions with integrated electrocatalytic network: A comprehensive kinetic map. Nano Lett. 2022, 22, 3728–3736.

    Article  CAS  Google Scholar 

  41. Wang, G. Y.; Zhu, M.; Zhang, Y.; Song, C.; Zhu, X. L.; Huang, Z. Y.; Zhang, Y. J.; Yu, F. F.; Xu, G.; Wu, M. H. et al. Double interface regulation: Toward highly stable lithium metal anode with high utilization. InfoMat 2022, 4, e12293.

    Article  CAS  Google Scholar 

  42. Han, F. D.; Yue, J.; Fan, X. L.; Gao, T.; Luo, C.; Ma, Z. H.; Suo, L. M.; Wang, C. S. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano Lett. 2016, 16, 4521–4527.

    Article  CAS  Google Scholar 

  43. Tan, G. Q.; Xu, R.; Xing, Z. Y.; Yuan, Y. F.; Lu, J.; Wen, J. G.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q. et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2017, 2, 17090.

    Article  CAS  Google Scholar 

  44. Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.

    Article  CAS  Google Scholar 

  45. Jäckle, M.; Groß, A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J. Chem. Phys. 2014, 141, 174710.

    Article  Google Scholar 

  46. Shi, L.; Xu, A.; Zhao, T. S. First-principles investigations of the working mechanism of 2D h-BN as an interfacial layer for the anode of lithium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 1987–1994.

    Article  CAS  Google Scholar 

  47. Xu, B. Q.; Liu, Z.; Li, J. X.; Huang, X.; Qie, B. Y.; Gong, T. Y.; Tan, L. Y.; Yang, X. J.; Paley, D.; Dontigny, M. et al. Engineering interfacial adhesion for high-performance lithium metal anode. Nano Energy 2020, 67, 104242.

    Article  CAS  Google Scholar 

  48. Zhu, J. G.; Li, P. K.; Chen, X.; Legut, D.; Fan, Y. C.; Zhang, R. F.; Lu, Y. Y.; Cheng, X. B.; Zhang, Q. F. Rational design of graphitic—inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Mater. 2019, 16, 426–433.

    Article  Google Scholar 

  49. Alpen, U. V.; Rabenau, A.; Talat, G. H. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 1977, 30, 621–623.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 52003038 and 52192610), Startup funds of Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China (No. U03210019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjun Hu, Jun Zhu or Baihai Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hu, A., Gan, X. et al. Synergy of in-situ heterogeneous interphases tailored lithium deposition. Nano Res. 16, 8304–8312 (2023). https://doi.org/10.1007/s12274-022-5004-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5004-0

Keywords

Navigation