Skip to main content
Log in

Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ammonia has been recognized as a promising fuel for solid oxide fuel cells (SOFCs) because of its relatively high hydrogen content and high energy density. However, the effective catalysis of ammonia on the surface of state-of-the-art anode greatly hinders the further development of direct ammonia SOFCs. In this study, we report our findings of surface activating and stabilizing of a Ni-based cermet anode for highly efficient and durable operation on ammonia fuel, achieved by a surface coating of CeO2−δ nanoparticles (NPs). When incorporated into a Ni-yttria-stabilized zirconia (Ni-YSZ) anode-supported single cell, the coatings demonstrate an improved electrochemical reaction activity and stability, achieving a high peak power density of 0.941 W·cm−2 at 700 °C, and a promising stability of ∼ 60 h (degradation rate of 0.127% h−1 at 0.5 A·cm−2), much better than those of cells with a bare anode (∼ 0.673 W·cm−2 and degradation rate of 0.294% h−1 at 0.5 A·cm−2). The catalytic NPs significantly enhance the reaction activity toward the decomposition of ammonia and oxidation of hydrogen, especially at low temperatures (< 700 °C), as confirmed by the detailed distribution of relaxation time (DRT) analyses of the impedance spectra of the cells on NH3 fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Chen, B.; Guan, D. Q.; Xu, M. G.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. P. Thermal–expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251.

    Article  CAS  Google Scholar 

  2. Papac, M.; Stevanović, V.; Zakutayev, A.; O’Hayre, R. Triple ionic-electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 2021, 20, 301–313.

    Article  CAS  Google Scholar 

  3. Boldrin, P.; Brandon, N. P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2019, 2, 571–577.

    Article  CAS  Google Scholar 

  4. Duan, C. C.; Kee, R. J.; Zhu, H. Y.; Karakaya, C.; Chen, Y. C.; Ricote, S.; Jarry, A.; Crumlin, E. J.; Hook, D.; Braun, R. et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217–222.

    Article  CAS  Google Scholar 

  5. Jensen, S. H.; Graves, C.; Mogensen, M.; Wendel, C.; Braun, R.; Hughes, G.; Gao, Z.; Barnett, S. A. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4. Energy Environ. Sci. 2015, 8, 2471–2479.

    Article  CAS  Google Scholar 

  6. Chen, Y.; DeGlee, B.; Tang, Y.; Wang, Z. Y.; Zhao, B. T.; Wei, Y. C.; Zhang, L.; Yoo, S.; Pei, K.; Kim, J. H. et al. A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat. Energy 2018, 3, 1042–1050.

    Article  CAS  Google Scholar 

  7. Yang, J.; Molouk, A. F. S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3−δ anode for direct ammonia-fueled solid oxide fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 7406–7412.

    Article  CAS  Google Scholar 

  8. Milcarek, R. J.; Nakamura, H.; Tezuka, T.; Maruta, K.; Ahn, J. Investigation of microcombustion reforming of ethane/air and micro-tubular solid oxide fuel cells. J. Power Sources 2020, 450, 227606.

    Article  CAS  Google Scholar 

  9. Ru, Y. L.; Sang, J. K.; Xia, C. R.; Wei, W. C. J.; Guan, W. B. Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-sided cathodes. Int. J. Hydrog. Energy 2020, 45, 7069–7076.

    Article  CAS  Google Scholar 

  10. Somacescu, S.; Cioatera, N.; Osiceanu, P.; Calderon-Moreno, J. M.; Ghica, C.; Neaţu, F.; Florea, M. Bimodal mesoporous NiO/CeO2−δ-YSZ with enhanced carbon tolerance in catalytic partial oxidation of methane-Potential IT-SOFCs anode. Appl. Catal. B: Environ. 2019, 241, 393–406.

    Article  CAS  Google Scholar 

  11. Cinti, G.; Desideri, U.; Penchini, D.; Discepoli, G. Experimental analysis of SOFC fuelled by ammonia. Fuel Cells 2014, 14, 221–230.

    Article  CAS  Google Scholar 

  12. Wojcik, A.; Middleton, H.; Damopoulos, I.; Van Herle, J. Ammonia as a fuel in solid oxide fuel cells. J. Power Sources 2003, 118, 342–348.

    Article  CAS  Google Scholar 

  13. Ma, Q. L.; Ma, J. J.; Zhou, S.; Yan, R. Q.; Gao, J. F.; Meng, G. Y. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. J. Power Sources 2007, 164, 86–89.

    Article  CAS  Google Scholar 

  14. Ma, Q. L.; Peng, R. R.; Tian, L. Z.; Meng, G. Y. Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells. Electrochem. Commun. 2006, 8, 1791–1795.

    Article  CAS  Google Scholar 

  15. Fournier, G. G. M.; Cumming, I. W.; Hellgardt, K. High performance direct ammonia solid oxide fuel cell. J. Power Sources 2006, 162, 198–206.

    Article  CAS  Google Scholar 

  16. Dekker, N. J. J.; Rietveld, G. Highly efficient conversion of ammonia in electricity by solid oxide fuel cells. J. Fuel Cell Sci. Technol. 2006, 3, 499–502.

    Article  CAS  Google Scholar 

  17. Maffei, N.; Pelletier, L.; Charland, J. P.; McFarlan, A. An ammonia fuel cell using a mixed ionic and electronic conducting electrolyte. J. Power Sources 2006, 162, 165–167.

    Article  CAS  Google Scholar 

  18. Ni, M.; Leung, D. Y. C.; Leung, M. K. H. Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. J. Power Sources 2008, 183, 682–686.

    Article  CAS  Google Scholar 

  19. Meng, G. Y.; Jiang, C. R.; Ma, J. J.; Ma, Q. L.; Liu, X. Q. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. J. Power Sources 2007, 173, 189–193.

    Article  CAS  Google Scholar 

  20. Gao, Y.; Chen, D. J.; Saccoccio, M.; Lu, Z. H.; Ciucci, F. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 2016, 27, 499–508.

    Article  CAS  Google Scholar 

  21. Yang, J.; Molouk, A. F. S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. A stability study of Ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 28701–28707.

    Article  CAS  Google Scholar 

  22. Song, Y. F.; Li, H. D.; Xu, M. G.; Yang, G. M.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. Infiltrated NiCo alloy nanoparticle decorated perovskite oxide: A highly active, stable, and antisintering anode for direct-ammonia solid oxide fuel cells. Small 2020, 16, 2001859.

    Article  CAS  Google Scholar 

  23. Zhang, H.; Zhou, Y. C.; Pei, K.; Pan, Y. X.; Xu, K.; Ding, Y.; Zhao, B. T.; Sasaki, K.; Choi, Y.; Chen, Y. et al. An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy Environ. Sci. 2022, 15, 287–295.

    Article  CAS  Google Scholar 

  24. Pan, Y. X.; Zhang, H.; Xu, K.; Zhou, Y. C.; Zhao, B. T.; Yuan, W.; Sasaki, K.; Choi, Y.; Chen, Y.; Liu, M. L. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Appl. Catal. B: Environ. 2022, 306, 121071.

    Article  CAS  Google Scholar 

  25. Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D. S. Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 2012, 5, 6278–6289.

    Article  Google Scholar 

  26. Molouk, A. F. S.; Yang, J.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells. J. Power Sources 2016, 305, 72–79.

    Article  CAS  Google Scholar 

  27. Wang, Y. H.; Yang, J.; Wang, J. X.; Guan, W. B.; Chi, B.; Jia, L. C.; Chen, J. Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells. J. Electrochem. Soc. 2020, 167, 064501.

    Article  CAS  Google Scholar 

  28. Xu, K.; Chen, Y.; Liu, M. L. Triple-phase boundaries (TPBs) in fuel cells and electrolyzers. Encycloped. Energy Storage 2021, 2, 299–328.

    Google Scholar 

  29. Zheng, W. Q.; Zhang, J.; Ge, Q. J.; Xu, H. Y.; Li, W. Z. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen. Appl. Catal. B: Environ. 2008, 80, 98–105.

    Article  CAS  Google Scholar 

  30. Pei, K.; Zhou, Y. C.; Xu, K.; He, Z. Y.; Chen, Y.; Zhang, W. L.; Yoo, S.; Zhao, B. T.; Yuan, W.; Liu, M. L. et al. Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating. Nano Energy 2020, 72, 104704.

    Article  CAS  Google Scholar 

  31. Zhang, H.; Xu, K.; He, F.; Zhou, Y. C.; Sasaki, K.; Zhao, B. T.; Choi, Y.; Liu, M. L.; Chen, Y. Surface regulating of a double-perovskite electrode for protonic ceramic fuel cells to enhance oxygen reduction activity and contaminants poisoning tolerance. Adv. Energy Mater 2022, 12, 2200761.

    Article  CAS  Google Scholar 

  32. Suzuki, T.; Hasan, Z.; Funahashi, Y.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Impact of anode microstructure on solid oxide fuel cells. Science 2009, 325, 852–855.

    Article  CAS  Google Scholar 

  33. Pan, Y. X.; Pei, K.; Zhou, Y. C.; Liu, T.; Liu, M. L.; Chen, Y. A straight, open and macro-porous fuel electrode-supported protonic ceramic electrochemical cell. J. Mater. Chem. A 2021, 9, 10789–10795.

    Article  CAS  Google Scholar 

  34. Chen, Y.; Zhang, Y. X.; Lin, Y.; Yang, Z. B.; Su, D.; Han, M. F.; Chen, F. L. Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy 2014, 10, 1–9.

    Article  CAS  Google Scholar 

  35. Ma, Q. L.; Peng, R. R.; Lin, Y. J.; Gao, J. F.; Meng, G. Y. A high-performance ammonia-fueled solid oxide fuel cell. J. Power Sources 2006, 161, 95–98.

    Article  CAS  Google Scholar 

  36. Xie, K.; Ma, Q. L.; Lin, B.; Jiang, Y. Z.; Gao, J. F.; Liu, X. Q.; Meng, G. Y. An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3−δ thin electrolyte prepared with a suspension spray. J. Power Sources 2007, 170, 38–41.

    Article  CAS  Google Scholar 

  37. Lin, Y.; Ran, R.; Guo, Y. M.; Zhou, W.; Cai, R.; Wang, J.; Shao, Z. P. Proton–conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. Int. J. Hydrog. Energy 2010, 35, 2637–2642.

    Article  CAS  Google Scholar 

  38. Akimoto, W.; Fujimoto, T.; Saito, M.; Inaba, M.; Yoshida, H.; Inagaki, T. Ni-Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells. Solid State Ion. 2014, 256, 1–4.

    Article  CAS  Google Scholar 

  39. Itagaki, Y.; Cui, J.; Ito, N.; Aono, H.; Yahiro, H. Electrophoretically deposited Ni-loaded (SmO15)0.2(CeO2)0.8 anode for ammonia-fueled solid oxide fuel cell. ECS Trans 2018, 85, 779–786.

    Article  CAS  Google Scholar 

  40. Shy, S. S.; Hsieh, S. C.; Chang, H. Y. A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements. J. Power Sources 2018, 396, 80–87.

    Article  CAS  Google Scholar 

  41. Stoeckl, B.; Subotić, V.; Preininger, M.; Schwaiger, M.; Evic, N.; Schroettner, H.; Hochenauer, C. Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes. Electrochim. Acta 2019, 298, 874–883.

    Article  CAS  Google Scholar 

  42. Wang, Y. H.; Gu, Y. C.; Zhang, H.; Yang, J.; Wang, J. X.; Guan, W. B.; Chen, J. Y.; Chi, B.; Jia, L. C.; Muroyama, H. et al. Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells. Appl. Energy 2020, 270, 115185.

    Article  CAS  Google Scholar 

  43. Miyazaki, K.; Muroyama, H.; Matsui, T.; Eguchi, K. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells. Sustainable Energy Fuels 2020, 4, 5238–5246.

    Article  CAS  Google Scholar 

  44. He, F.; Gao, Q. N.; Liu, Z. Q.; Yang, M. T.; Ran, R.; Yang, G. M.; Wang, W.; Zhou, W.; Shao, Z. P. A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures. Adv. Energy Mater. 2021, 11, 2003916.

    Article  CAS  Google Scholar 

  45. Zhu, L. Z.; Cadigan, C.; Duan, C. C.; Huang, J.; Bian, L. Z.; Le, L.; Hernandez, C. H.; Avance, V.; O’Hayre, R.; Sullivan, N. P. Ammonia–fed reversible protonic ceramic fuel cells with Ru-based catalyst. Commun. Chem. 2021, 4, 121.

    Article  CAS  Google Scholar 

  46. Xiong, X. D.; Yu, J.; Huang, X. J.; Zou, D.; Song, Y. F.; Xu, M. G.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Slightly ruthenium doping enables better alloy nanoparticle exsolution of perovskite anode for high-performance direct-ammonia solid oxide fuel cells. J. Mater. Sci. Technol. 2022, 125, 51–58.

    Article  Google Scholar 

  47. Choi, S. M.; An, H.; Yoon, K. J.; Kim, B. K.; Lee, H. W.; Son, J. W.; Kim, H.; Shin, D.; Ji, H. I.; Lee, J. H. Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte. Appl. Energy 2019, 233–234, 29–36.

    Article  Google Scholar 

  48. Shi, N.; Su, F.; Huan, D. M.; Xie, Y.; Lin, J.; Tan, W. Z.; Peng, R. R.; Xia, C. R.; Chen, C. S.; Lu, Y. L. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology. J. Mater. Chem. A 2017, 5, 19664–19671.

    Article  CAS  Google Scholar 

  49. Ma, J. Y.; Pan, Y. X.; Wang, Y. K.; Chen, Y. A Sr and Ni doped ruddlesden-popper perovskite oxide La1.6Sr0.4Cu0.6Ni0.4O4+δ as a promising cathode for protonic ceramic fuel cells. J. Power Sources 2021, 509, 230369.

    Article  CAS  Google Scholar 

  50. Zhang, Y. X.; Chen, Y.; Yan, M. F.; Chen, F. L. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477.

    Article  CAS  Google Scholar 

  51. Sumi, H.; Yamaguchi, T.; Hamamoto, K.; Suzuki, T.; Fujishiro, Y.; Matsui, T.; Eguchi, K. AC impedance characteristics for anode-supported microtubular solid oxide fuel cells. Electrochim. Acta 2012, 67, 159–165.

    Article  CAS  Google Scholar 

  52. Schichlein, H.; Müller, A. C.; Voigts, M.; Krügel, A.; Ivers-Tiffée, E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 2002, 32, 875–882.

    Article  CAS  Google Scholar 

  53. Leonide, A.; Sonn, V.; Weber, A.; Ivers-Tiffée, E. Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J. Electrochem. Soc. 2008, 155, B36.

    Article  CAS  Google Scholar 

  54. Hua, B.; Yan, N.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J. L. Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility. Adv. Mater. 2016, 28, 8922–8926.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the National Natural Science Foundation of China (Nos. 22179039 and 22005105), the Natural Science Foundation of Guangdong Province (No. 2021A1515010395), and the Pearl River Talent Recruitment Program (Nos. 2019QN01C693 and2021ZT09L392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Zhu, F., Hou, M. et al. Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells. Nano Res. 16, 2454–2462 (2023). https://doi.org/10.1007/s12274-022-4993-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4993-z

Keywords

Navigation