Skip to main content
Log in

Gadolinium-containing semiconducting polymer nanoparticles for magnetic resonance/fluorescence dual-modal imaging and photothermal therapy of oral squamous cell carcinoma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral and maxillofacial region. Due to its unique location, earlier and more accurate diagnosis and more minimally invasive treatment of OSCC is of major importance. Herein, gadolinium-containing semiconductor polymer nanoparticles (SPN-Gd) were designed and prepared. The nanoparticles consist of a near-infrared (NIR) absorption semiconductor polymer (PCPDTBT) served as fluorescence signal source and a photothermal conversion agent (PTA) and a gadolinium-grafted triblock amphiphilic copolymer (F127-DTPA-Gd) served as a magnetic resonance imaging (MRI) contrast agent and nanocarrier. The experiments in vivo showed that SPN-Gd could act as an MRI contrast agent and optical image agent with a long retention time, and it had a significant inhibiting effect on tumors of OSCC mice model through photothermal therapy (PTT). Thus our study provides a simple nanotheranostic platform composed of two components for efficient MR/fluorescence dual-modal imaging-guided PTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chamoli, A.; Gosavi, A. S.; Shirwadkar, U. P.; Wangdale, K. V.; Behera, S. K.; Kurrey, N. K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncol. 2021, 121, 105451.

    Article  Google Scholar 

  2. Ishida, K.; Nakashima, T.; Shibata, T.; Hara, A.; Tomita, H. Role of the DEK oncogene in the development of squamous cell carcinoma. Int. J. Clin. Oncol. 2020, 25, 1563–1569.

    Article  CAS  Google Scholar 

  3. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

    Article  Google Scholar 

  4. Gao, A. T.; Pan, X.; Yang, X. D.; Lin, Z. T. Predictive factors in the treatment of oral squamous cell carcinoma using PD-1/PD-L1 inhibitors. Invest. New Drugs 2021, 39, 1132–1138.

    Article  CAS  Google Scholar 

  5. Han, Z.; Li, Y. J.; Roelle, S.; Zhou, Z. X.; Liu, Y. C.; Sabatelle, R.; DeSanto, A.; Yu, X.; Zhu, H.; Magi-Galluzzi, C. et al. Targeted contrast agent specific to an oncoprotein in tumor microenvironment with the potential for detection and risk stratification of prostate cancer with MRI. Bioconjug. Chem. 2017, 28, 1031–1040.

    Article  CAS  Google Scholar 

  6. Kim, H. K.; Lee, G. H.; Chang, Y. M. Gadolinium as an MRI contrast agent. Future Med. Chem. 2018, 10, 639–661.

    Article  CAS  Google Scholar 

  7. Morana, G.; Cugini, C.; Scatto, G.; Zanato, R.; Fusaro, M.; Dorigo, A. Use of contrast agents in oncological imaging: magnetic resonance imaging. Cancer Imaging 2013, 13, 350–359.

    Article  Google Scholar 

  8. Shirazi, A. N.; Park, S. E.; Rad, S.; Baloyan, L.; Mandal, D.; Sajid, M. I.; Hall, R.; Lohan, S.; Zoghebi, K.; Parang, K. et al. Cyclic peptide-gadolinium nanoparticles for enhanced intracellular delivery. Pharmaceutics 2020, 12, 792.

    Article  CAS  Google Scholar 

  9. Xin, X. Y.; Sha, H. Z.; Shen, J. T.; Zhang, B.; Zhu, B.; Liu, B. R. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI. Oncol. Rep. 2016, 35, 3227–3235.

    Article  CAS  Google Scholar 

  10. Usman, M. S.; Hussein, M. Z.; Fakurazi, S.; Saad, F. F. A. Gadolinium-based layered double hydroxide and graphene oxide nano-carriers for magnetic resonance imaging and drug delivery. Chem. Cent. J. 2017, 11, 47.

    Article  CAS  Google Scholar 

  11. Ji, Y. Y.; Jones, C.; Baek, Y.; Park, G. K.; Kashiwagi, S.; Choi, H. S. Near-infrared fluorescence imaging in immunotherapy. Adv. Drug Deliv. Rev. 2020, 167, 121–134.

    Article  CAS  Google Scholar 

  12. Pan, X.; Gao, A. T.; Lin, Z. T. Fluorescence imaging of tumor immune contexture in immune checkpoint blockade therapy. Int. Immunopharmacol. 2022, 106, 108617.

    Article  CAS  Google Scholar 

  13. Yan, R. Q.; Hu, Y. X.; Liu, F.; Wei, S. X.; Fang, D. Q.; Shuhendler, A. J.; Liu, H.; Chen, H. Y.; Ye, D. J. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly. J. Am. Chem. Soc. 2019, 141, 10331–10341.

    Article  CAS  Google Scholar 

  14. Feng, L. H.; Zhu, C. L.; Yuan, H. X.; Liu, L. B.; Lv, F. T.; Wang, S. Conjugated polymernanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633.

    Article  CAS  Google Scholar 

  15. Zhou, W.; Chen, Y.; Zhang, Y. T.; Xin, X. Y.; Li, R. T.; Xie, C.; Fan, Q. L. Iodine-rich semiconducting polymer nanoparticles for CT/fluorescence dual-modal imaging-guided enhanced photodynamic therapy. Small 2020, 16, 1905641.

    Article  CAS  Google Scholar 

  16. Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev. 2012, 112, 4687–4735.

    Article  CAS  Google Scholar 

  17. Zhen, X.; Xie, C.; Pu, K. Y. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem., Int. Ed. 2018, 57, 3938–3942.

    Article  CAS  Google Scholar 

  18. Hu, J. J.; Cheng, Y. J.; Zhang, X. Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 2018, 10, 22657–22672.

    Article  CAS  Google Scholar 

  19. Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F. R.; Frey, H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 2016, 116, 2170–2243.

    Article  CAS  Google Scholar 

  20. Naruphontjirakul, P.; Viravaidya-Pasuwat, K. Development of anti-HER2-targeted doxorubicin-core—shell chitosan nanoparticles for the treatment of human breast cancer. Int. J. Nanomed. 2019, 14, 4105–4121.

    Article  CAS  Google Scholar 

  21. Vu-Quang, H.; Vinding, M. S.; Nielsen, T.; Ullisch, M. G.; Nielsen, N. C.; Nguyen, D. T.; Kjems, J. Pluronic F127-folate coated super paramagenic iron oxide nanoparticles as contrast agent for cancer diagnosis in magnetic resonance imaging. Polymers 2019, 11, 743.

    Article  CAS  Google Scholar 

  22. Xiao, Y. D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z. S.; Zhou, S. K. MRI contrast agents: Classification and application (review). Int. J. Mol. Med. 2016, 38, 1319–1326.

    Article  CAS  Google Scholar 

  23. Chaabane, L.; Tei, L.; Miragoli, L.; Lattuada, L.; von Wronski, M.; Uggeri, F.; Lorusso, V.; Aime, S. In vivo MR imaging of fibrin in a neuroblastoma tumor model by means of a targeting Gd-containing peptide. Mol. Imaging Biol. 2015, 17, 819–828.

    Article  CAS  Google Scholar 

  24. Abelha, T. F.; Neumann, P. R.; Holthof, J.; Dreiss, C. A.; Alexander, C.; Green, M.; Dailey, L. A. Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. J. Mater. Chem. B 2019, 7, 5115–5124.

    Article  CAS  Google Scholar 

  25. Yoon, J.; Kwag, J.; Shin, T. J.; Park, J.; Lee, Y. M.; Lee, Y.; Park, J.; Heo, J.; Joo, C.; Park, T. J. et al. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. Adv. Mater. 2014, 26, 4559–4564.

    Article  CAS  Google Scholar 

  26. Wu, C. F.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2008, 2, 2415–2423.

    Article  CAS  Google Scholar 

  27. Wang, Y. F.; Meng, H. M.; Li, Z. H. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale 2021, 13, 8751–8772.

    Article  CAS  Google Scholar 

  28. Park, S. J.; Ye, W. D.; Xiao, R.; Silvin, C.; Padget, M.; Hodge, J. W.; van Waes, C.; Schmitt, N. C. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral Oncol. 2019, 95, 127–135.

    Article  CAS  Google Scholar 

  29. Gupta, G.; Borglum, K.; Chen, H. X. Immunogenic cell death: A step ahead of autophagy in cancer therapy. J. Cancer Immunol. (Wilmington) 2021, 3, 47–59.

    Google Scholar 

  30. Sweeney, E. E.; Cano-Mejia, J.; Fernandes, R. Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma. Small 2018, 14, 1800678.

    Article  Google Scholar 

  31. Yu, Y. J.; Li, J.; Song, B. Y.; Ma, Z.; Zhang, Y. F.; Sun, H. N.; Wei, X. S.; Bai, Y. Y.; Lu, X. G.; Zhang, P. et al. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials 2022, 280, 121312.

    Article  CAS  Google Scholar 

  32. Ruan, H. T.; Bu, L. L.; Hu, Q. Y.; Cheng, H.; Lu, W. Y.; Gu, Z. Strategies of combination drug delivery for immune checkpoint blockades. Adv. Healthc. Mater. 2019, 8, 1801099.

    Google Scholar 

  33. Aoto, K.; Mimura, K.; Okayama, H.; Saito, M.; Chida, S.; Noda, M.; Nakajima, T.; Saito, K.; Abe, N.; Ohki, S. et al. Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma. Oncol. Rep. 2018, 39, 151–159.

    CAS  Google Scholar 

  34. Fabian, K. P.; Wolfson, B.; Hodge, J. W. From immunogenic cell death to immunogenic modulation: Select chemotherapy regimens induce a spectrum of immune-enhancing activities in the tumor microenvironment. Front. Oncol. 2021, 11, 728018.

    Article  Google Scholar 

  35. Xie, Q.; Li, Z.; Liu, Y.; Zhang, D. W.; Su, M.; Niitsu, H.; Lu, Y. Y.; Coffey, R. J.; Bai, M. F. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater. 2021, 134, 716–729.

    Article  CAS  Google Scholar 

  36. Ruan, H.; Leibowitz, B. J.; Zhang, L.; Yu, J. Immunogenic cell death in colon cancer prevention and therapy. Mol. Carcinog. 2020, 59, 783–793.

    Article  CAS  Google Scholar 

  37. Heshmati Aghda, N.; Abdulsahib, S. M.; Severson, C.; Lara, E. J.; Torres Hurtado, S.; Yildiz, T.; Castillo, J. A.; Tunnell, J. W.; Betancourt, T. Induction of immunogenic cell death of cancer cells through nanoparticle-mediated dual chemotherapy and photothermal therapy. Int. J. Pharm. 2020, 589, 119787.

    Article  CAS  Google Scholar 

  38. Sistigu, A.; Yamazaki, T.; Vacchelli, E.; Chaba, K.; Enot, D. P.; Adam, J.; Vitale, I.; Goubar, A.; Baracco, E. E.; Remédios, C. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 2014, 20, 1301–1309.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82201135, 22174070, and 61905122), Nanjing Clinical Research Center for Oral Diseases (No. 2019060009), General project of Jiangsu Provincial Health Commission (No. M2021077), Scientific research fund of Jiangsu Medical Association (No. SYH-3201150-0007(2021002)), and the Natural Science Foundation of Jiangsu Province (No. BK20190735).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Xie or Zitong Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Gao, A., Hu, Y. et al. Gadolinium-containing semiconducting polymer nanoparticles for magnetic resonance/fluorescence dual-modal imaging and photothermal therapy of oral squamous cell carcinoma. Nano Res. 16, 2808–2820 (2023). https://doi.org/10.1007/s12274-022-4947-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4947-5

Keywords

Navigation