Skip to main content
Log in

Oxidation-induced phase separation of carbon-supported CuAu nanoparticles for electrochemical reduction of CO2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alloy nanostructures have been extensively exploited in both thermal and electrochemical catalysis due to their beneficial “synergetic effects” and being cost-effective. Understandings of the alloy nanostructures including phases, interfaces, and chemical composition are prerequisites for utilizing them as efficient electrocatalysts. Here, we use carbon-supported CuAu nanoparticles as a model catalyst to demonstrate the phase-separation induced variation of electrochemical performance for the CO2 reduction reaction. Driven by thermal oxidation, the CuOx phase gradually separates from the original CuAu nanoparticles, and different carbon supports, i.e., graphene vs. carbon nanotube lead to a reversed trend in the selectivity towards CO production. Through detailed structural and chemical analysis, we find the extent of phase separation holds the key to this variation and could be used as an effective method to tune the electrochemical properties of the alloy phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, Z. H.; Sun, J. M.; Li, Y.; Datye, A. K.; Wang, Y. Bimetallic catalysts for hydrogen generation. Chem. Soc. Rev. 2012, 41, 7994–8008.

    Article  CAS  Google Scholar 

  2. Fang, H.; Yang, J. H.; Wen, M.; Wu, Q. S. Nanoalloy materials for chemical catalysis. Adv. Mater. 2018, 30, 1705698.

    Article  Google Scholar 

  3. Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41, 8099–8139.

    Article  CAS  Google Scholar 

  4. Tao, F. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev. 2012, 41, 7977–7979.

    Article  CAS  Google Scholar 

  5. Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core—shell structure for Ni-Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

    Article  CAS  Google Scholar 

  6. van der Hoeven, J. E. S.; Jelic, J.; Olthof, L. A.; Totarella, G.; van Dijk-Moes, R. J. A.; Krafft, J. M.; Louis, C.; Studt, F.; van Blaaderen, A.; de Jongh, P. E. Unlocking synergy in bimetallic catalysts by core—shell design. Nat. Mater. 2021, 20, 1216–1220.

    Article  CAS  Google Scholar 

  7. Watanabe, M.; Shibata, M.; Kato, A.; Azuma, M.; Sakata, T. Design of alloy electrocatalysts for CO2 reduction: III. The selective and reversible reduction of CO2 on Cu alloy electrodes. J. Electrochem. Soc. 1991, 138, 3382–3389.

    Article  CAS  Google Scholar 

  8. Watanabe, M.; Shibata, M.; Katoh, A.; Sakata, T.; Azuma, M. Design of alloy electrocatalysts for CO2 reduction: Improved energy efficiency, selectivity, and reaction rate for the CO2 electroreduction on Cu alloy electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1991, 305, 319–328.

    Article  CAS  Google Scholar 

  9. Friebel, D.; Mbuga, F.; Rajasekaran, S.; Miller, D. J.; Ogasawara, H.; Alonso-Mori, R.; Sokaras, D.; Nordlund, D.; Weng, T. C.; Nilsson, A. Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au(111) model catalysts for CO2 electroreduction. J. Phys. Chem. C 2014, 118, 7954–7961.

    Article  CAS  Google Scholar 

  10. Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

    Article  CAS  Google Scholar 

  11. Lv, X. M.; Shang, L. M.; Zhou, S.; Li, S.; Wang, Y. H.; Wang, Z. Q.; Sham, T. K.; Peng, C.; Zheng, G. F. Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Adv. Energy Mater. 2020, 10, 2001987.

    Article  CAS  Google Scholar 

  12. Pardo Pérez, L. C.; Arndt, A.; Stojkovikj, S.; Ahmet, I. Y.; Arens, J. T.; Dattila, F.; Wendt, R.; Guilherme Buzanich, A.; Radtke, M.; Davies, V. et al. Determining structure-activity relationships in oxide derived Cu-Sn catalysts during CO2 electroreduction using X-ray spectroscopy. Adv. Energy Mater. 2022, 12, 2103328.

    Article  Google Scholar 

  13. Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

    Article  CAS  Google Scholar 

  14. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  CAS  Google Scholar 

  15. He, J. F.; Johnson, N. J. J.; Huang, A. X.; Berlinguette, C. P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 2018, 11, 48–57.

    Article  CAS  Google Scholar 

  16. Lee, S.; Park, G.; Lee, J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017, 7, 8594–8604.

    Article  CAS  Google Scholar 

  17. Wang, Y.; Wang, D. G.; Dares, C. J.; Marquard, S. L.; Sheridan, M. V.; Meyer, T. J. CO2 reduction to acetate in mixtures of ultrasmall (Cu)n,(Ag)m bimetallic nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, 278–283.

    Article  CAS  Google Scholar 

  18. Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.

    Article  CAS  Google Scholar 

  19. Tao, Z. X.; Wu, Z. S.; Yuan, X. L.; Wu, Y. S.; Wang, H. L. Copper-gold interactions enhancing formate production from electrochemical CO2 reduction. ACS Catal. 2019, 9, 10894–10898.

    Article  CAS  Google Scholar 

  20. Wang, L.; Higgins, D. C.; Ji, Y. F.; Morales-Guio, C. G.; Chan, K.; Hahn, C.; Jaramillo, T. F. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc. Natl. Sci. USA 2020, 117, 12572–12575.

    Article  CAS  Google Scholar 

  21. Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239–8247.

    Article  CAS  Google Scholar 

  22. Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Amer. Chem. Soc. 2017, 139, 8329–8336.

    Article  CAS  Google Scholar 

  23. Chang, C. J.; Hung, S. F.; Hsu, C. S.; Chen, H. C.; Lin, S. C.; Liao, Y. F.; Chen, H. M. Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuOx on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent. Sci. 2019, 5, 1998–2009.

    Article  CAS  Google Scholar 

  24. Zhang, L. J.; Li, M.; Zhang, S. B.; Cao, X. R.; Bo, J. X.; Zhu, X. L.; Han, J. Y.; Ge, Q. F.; Wang, H. Promoting carbon dioxide electroreduction toward ethanol through loading Au nanoparticles on hollow Cu2O nanospheres. Catal. Today 2021, 365, 348–356.

    Article  CAS  Google Scholar 

  25. Lee, C. W.; Yang, K. D.; Nam, D. H.; Jang, J. H.; Cho, N. H.; Im, S. W.; Nam, K. T. Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 2018, 30, 1704717.

    Article  Google Scholar 

  26. Jeon, H. S.; Timoshenko, J.; Scholten, F.; Sinev, I.; Herzog, A.; Haase, F. T.; Roldan Cuenya, B. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 19879–19887.

    Article  CAS  Google Scholar 

  27. Chang, C. J.; Lin, S. C.; Chen, H. C.; Wang, J. L.; Zheng, K. J.; Zhu, Y. P.; Chen, H. M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119–12132.

    Article  CAS  Google Scholar 

  28. Ye, K.; Zhou, Z. W.; Shao, J. Q.; Lin, L.; Gao, D. F.; Ta, N.; Si, R.; Wang, G. X.; Bao, X. H. In situ reconstruction of a hierarchical Sn-Cu/SnOx. core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 4814–4821.

    Article  CAS  Google Scholar 

  29. Zhan, W. C.; Wang, J. L.; Wang, H. F.; Zhang, J. S.; Liu, X. F.; Zhang, P. F.; Chi, M. F.; Guo, Y. L.; Guo, Y.; Lu, G. Z. et al. Crystal structural effect of AuCu alloy nanoparticles on catalytic CO oxidation. J. Am. Chem. Soc. 2017, 139, 8846–8854.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the National Natural Science Foundation of China (No. 22172110). We thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support. We thank the facility Center at the Institute of Molecular Plus at Tianjin University to use the transmission electron microscopes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zejian Dong or Langli Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Y., Liu, Y., Ren, Q. et al. Oxidation-induced phase separation of carbon-supported CuAu nanoparticles for electrochemical reduction of CO2. Nano Res. 16, 2119–2125 (2023). https://doi.org/10.1007/s12274-022-4935-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4935-9

Keywords

Navigation