Skip to main content
Log in

An orderly arranged dual-role MIL-53(Al) nanorods array rooted on carbon nanotube film for long-life and stable lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is of great value to synchronously resolve the critical issues of the polysulfide shuttle and dendrite growth in lithium-sulfur (Li-S) batteries. Herein, a bifunctional Al-based Material of Institute Lavoisier-53 (MIL-53(Al))/carbon nanotube (MIL-53/CNT) composite is reported for this matter, which was constructed by growing an ordered MIL-53(Al) nanorods array on the CNT film. For the sulfur cathode, the proposed structure serves as a multifunctional interlayer to block polysulfides and accelerate their catalytic conversion, thus efficaciously inhibiting the shuttle effect. Meanwhile, when applied as the anode host material (Li@MIL-53/CNT), the flexible CNT film serves as a self-standing framework to accommodate Li metal and alleviate the volume expansion, while the uniform ion channels built by the MIL-53(Al) nanorods array along with the abundant oxygen groups can homogenize Li ion diffusion, enabling a steady Li plating/stripping behavior and limiting the dendrite growth. Not surprisingly, Li-S full battery with MIL-53/CNT interlayer and Li@MIL-53/CNT anode delivers an appreciable specific capacity of 735 mAh·g−1 and excellent cycle durability at 5 C, presenting a limited capacity decay of 0.03% per cycle in 500 cycles. Besides, an impressive cycle stability and rate capability are also achieved at high-sulfur loading and lean electrolyte conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, M. H.; Yan, R.; Yang, Z.; Tao, X. F.; Ma, T.; Cao, S. J.; Ran, F.; Li, S.; Yang, W.; Cheng, C. Polysulfide catalytic materials for fast-kinetic metal-sulfur batteries: Principles and active centers. Adv. Sci. (Weinh.) 2022, 9, 2102217.

    CAS  Google Scholar 

  2. Zhang, J.; You, C. Y.; Lin, H. Z.; Wang, J. Electrochemical kinetic modulators in lithium-sulfur batteries: From defect-rich catalysts to single atomic catalysts. Energy Environ. Mater. 2022, 5, 731–750.

    Article  CAS  Google Scholar 

  3. Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

    Article  CAS  Google Scholar 

  4. Gao, G. K.; Wang, Y. R.; Wang, S. B.; Yang, R. X.; Chen, Y. F.; Zhang, Y.; Jiang, C.; Wei, M. J.; Ma, H. Y. Lan, Y. Q. Stepped channels integrated lithium-sulfur separator via photoinduced multidimensional fabrication of metal-organic frameworks. Angew. Chem., Int. Ed. 2021, 60, 10147–10154.

    Article  CAS  Google Scholar 

  5. Wang, J.; Zhang, J.; Cheng, S.; Yang, J.; Xi, Y. L.; Hou, X. G.; Xiao, Q. B.; Lin, H. Z. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano Lett. 2021, 21, 3245–3253.

    Article  CAS  Google Scholar 

  6. He, Y. B.; Chang, Z.; Wu, S. C.; Qiao, Y.; Bai, S. Y.; Jiang, K. Z.; He, P.; Zhou, H. S. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

    Article  Google Scholar 

  7. He, J. R.; Manthiram, A. 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li-S full cells. Adv. Energy Mater. 2020, 10, 2002654.

    Article  CAS  Google Scholar 

  8. Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

    Article  Google Scholar 

  9. Wang, J. N.; Yi, S. S.; Liu, J. W.; Sun, S. Y.; Liu, Y. P.; Yang, D. W.; Xi, K.; Gao, G. X.; Abdelkader A.; Yan W. et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano. 2020, 11, 9819–9831.

    Article  CAS  Google Scholar 

  10. Wang, J.; Yang, J.; Xiao, Q. B.; Zhang, J.; Li, T.; Jia, L. J.; Wang, Z. L.; Cheng, S.; Li, L. G.; Liu, M. N. et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving longlife dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 2021, 31, 2007434.

    Article  CAS  Google Scholar 

  11. Ye, H. L.; Li, Y. G. Towards practical lean-electrolyte Li-S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res. Energy 2022, 1: e9120012.

    Article  Google Scholar 

  12. Wu, X.; Liu, N. N.; Guo, Z. K.; Wang, M. X.; Qiu, Y.; Tian, D.; Guan, B.; Fan, L. S.; Zhang, N. Q. Constructing multi-functional Janus separator toward highly stable lithium batteries. Energy Storage Mater. 2020, 28, 153–159.

    Article  CAS  Google Scholar 

  13. Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246–252.

    Article  Google Scholar 

  14. Wang, J.; Jia, L. J.; Duan, S. R.; Liu, H. T.; Xiao, Q. B.; Li, T.; Fan, H. Y.; Feng, K.; Yang, J.; Wang, Q. et al. Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Mater. 2020, 28, 375–382.

    Article  Google Scholar 

  15. Wang, J.; Jia, L. J.; Lin, H. Z.; Zhang, Y. G. Single-atomic catalysts embedded on nanocarbon supports for high energy density lithium-sulfur batteries. ChemSusChem 2020, 13, 3404–3411.

    Article  CAS  Google Scholar 

  16. Wang, X. B.; Zhao, Y.; Wu, F. C.; Liu, S. M.; Zhang, Z. S.; Tan, Z. Y.; Du, X. H.; Li, J. D. ZIF-7@carbon composites as multifunctional interlayer for rapid and durable Li-S performance. J. Energy Chem. 2021, 57, 19–27.

    Article  CAS  Google Scholar 

  17. Deng, N. P.; Liu, Y.; Li, Q. X.; Yan, J.; Lei, W. W.; Wang, G.; Wang, L. Y.; Liang, Y. Y.; Kang, W. M.; Cheng, B. W. Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery. Energy Storage Mater. 2019, 23, 314–349.

    Article  Google Scholar 

  18. Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 11, 1835–1853.

    Article  Google Scholar 

  19. Hao, A. H.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: challenges and solutions. Nano Res. Energy 2022, 1: e9120013.

    Article  Google Scholar 

  20. Wang, X. Y.; Wang, Y. N.; Wu, F. C.; Jin, G. F.; Li, J. D.; Zhang, Z. S. Continuous zirconium-based MOF-808 membranes for polysulfide shuttle suppression in lithium-sulfur batteries. Appl. Surf. Sci. 2022, 596, 153628.

    Article  CAS  Google Scholar 

  21. Noh, J.; Chen, W. M.; Wu, P.; Huang, Y. T.; Tan, J.; Zhou, H. C.; Yu, C. Large cumulative capacity enabled by regulating lithium plating with metal-organic framework layers on porous carbon nanotube scaffolds. Adv. Funct. Mater. 2021, 31, 2104899.

    Article  CAS  Google Scholar 

  22. Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

    Article  CAS  Google Scholar 

  23. Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 2019, 18, 384–389.

    Article  CAS  Google Scholar 

  24. Wang, G.; Chen, C.; Chen, Y. H.; Kang, X. W.; Yang, C. H.; Wang, F.; Liu, Y.; Xiong, X. H. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem., Int. Ed. 2020, 59, 2055–2060.

    Article  CAS  Google Scholar 

  25. Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1: e9120025.

    Article  Google Scholar 

  26. Xu, T. T.; Shehzad, M. A.; Wang, X.; Wu, B.; Ge, L.; Xu, T. W. Engineering leaf-like UiO-66-SO3H membranes for selective transport of cations. Nano-Micro Lett. 2020, 12, 51.

    Article  CAS  Google Scholar 

  27. Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.

    Article  CAS  Google Scholar 

  28. Wang, Y. C.; Ban, Y. J.; Hu, Z. Y.; Zhao, Y.; Zheng, M. Y.; Yang, W. S.; Zhang, T. Hetero-lattice intergrown and robust MOF membranes for polyol upgrading. Angew. Chem., Int. Ed. 2022, 61, e202114479.

    CAS  Google Scholar 

  29. Wu, X.; Fan, L. S.; Qiu, Y.; Wang, M. X.; Cheng, J. H.; Guan, B.; Guo, Z. K.; Zhang, N. Q.; Sun, K. N. Ion-selective Prussian-blue-modified celgard separator for high-performance lithium-sulfur battery. ChemSusChem 2018, 11, 3345–3351.

    Article  CAS  Google Scholar 

  30. Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 31, 2108835.

    Article  Google Scholar 

  31. Hong, X. J.; Song, C. L.; Yang, Y.; Tan, H. C.; Li, G. H.; Cai, Y. P.; Wang, H. X. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries. ACS Nano 2019, 13, 1923–1931.

    CAS  Google Scholar 

  32. Wang, Y.; Deng, Z.; Huang, J. Y.; Li, H. J.; Li, Z. Y.; Peng, X. S.; Tian, Y.; Lu, J. G.; Tang, H. C.; Chen, L. X. et al. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Storage Mater. 2021, 36, 466–477.

    Article  Google Scholar 

  33. Li, J.; Jiao, C. M.; Zhu, J. H.; Zhong, L. B.; Kang, T.; Aslam, S.; Wang, J. Y.; Zhao, S. F.; Qiu, Y. J. Hybrid co-based MOF nanoboxes/CNFs interlayer as microreactors for polysulfides-trapping in lithium-sulfur batteries. J. Energy Chem. 2021, 57, 469–476.

    Article  CAS  Google Scholar 

  34. Sun, Z. W.; Jin, S.; Jin, H. C.; Du, Z. Z.; Zhu, Y. W.; Cao, A. Y.; Ji, H. X.; Wan, L. J. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv. Mater. 2018, 30, 1800884.

    Article  Google Scholar 

  35. Lin, K.; Qin, X. Y.; Liu, M.; Xu, X. F.; Liang, G. M.; Wu, J. X.; Kang, F. Y.; Chen, G. H.; Li, B. H. Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv. Funct. Mater. 2019, 29, 1903229.

    Article  CAS  Google Scholar 

  36. Chin, J. M.; Chen, E. Y.; Menon, A. G.; Tan, H. Y.; Hor, A. T. S.; Schreyer, M. K.; Xu, J. W. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. CrystEngComm 2013, 15, 654–657.

    Article  CAS  Google Scholar 

  37. Liu, J. F.; Mu, J. C.; Qin, R. X.; Ji, S. F. Pd nanoparticles immobilized on MIL-53(Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Pet. Sci. 2019, 16, 901–911.

    Article  Google Scholar 

  38. Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries. J. Mater. Chem. A 2019, 7, 6596–6615.

    Article  CAS  Google Scholar 

  39. He, Y. B.; Qiao, Y.; Chang, Z.; Zhou, H. S. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy Environ. Sci. 2019, 12, 2327–2344.

    Article  CAS  Google Scholar 

  40. Imanipoor, J.; Mohammadi, M.; Dinari, M.; Ehsani, M. R. Adsorption and desorption of amoxicillin antibiotic from water matrices using an effective and recyclable MIL-53(Al) metal-organic framework adsorbent. J. Chem. Eng. Data 2021, 66, 389–403.

    Article  CAS  Google Scholar 

  41. Liu, F.; Cao, J.; Yang, Z. H.; Xiong, W. P.; Xu, Z. Y.; Song, P. P.; Jia, M. Y.; Sun, S. W.; Zhang, Y. R.; Zhong, X. X. Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions. J. Colloid Interface Sci. 2021, 581, 195–204.

    Article  CAS  Google Scholar 

  42. Ma, X. Y.; Tan, J. Y.; Li, Z. H.; Huang, D. G.; Xue, S.; Xu, Y. Q.; Tao, H. S. Fabrication of stable MIL-53(Al) for excellent removal of Rhodamine B. Langmuir 2022, 38, 1158–1169.

    Article  CAS  Google Scholar 

  43. Han, D. D.; Wang, P. F.; Li, P.; Shi, J.; Liu, J.; Chen, P. J.; Zhai, L. P.; Mi, L. W.; Fu, Y. Z. Homogeneous and fast Li-ion transport enabled by a novel metal-organic-framework-based succinonitrile electrolyte for dendrite-free Li deposition. ACS Appl. Mater. Interfaces 2021, 13, 52688–52696.

    Article  CAS  Google Scholar 

  44. Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

    Article  CAS  Google Scholar 

  45. Wei, Y. H.; Wang, B. Y.; Zhang, Y.; Zhang, M.; Wang, Q.; Zhang, Y.; Wu, H. Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward highperformance Li-S full batteries. Adv. Funct. Mater. 2021, 31, 2006033.

    Article  CAS  Google Scholar 

  46. Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Zhang, Y.; Huang, C.; Zhang, Y. P.; Wang, Y. Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem. Eng. J. 2019, 355, 478–486.

    Article  CAS  Google Scholar 

  47. Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 2020, 11, 93.

    Article  CAS  Google Scholar 

  48. Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward highperformance Li-S batteries. ACS Nano 2020, 14, 8495–8507.

    Article  CAS  Google Scholar 

  49. Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

    Article  CAS  Google Scholar 

  50. Zuo, Y. Z.; Zhu, Y. J.; Tang, X. S.; Zhao, M.; Ren, P. J.; Su, W. M.; Tang, Y. F.; Chen, Y. F. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries. J. Power Sources 2020, 464, 228181.

    Article  CAS  Google Scholar 

  51. Wang, T. Y.; Su, D. W.; Chen, Y.; Yan, K.; Yu, L.; Liu, L.; Zhong, Y. H.; Notten, P. H. L.; Wang, C. Y.; Wang, G. X. Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 401, 126079.

    Article  CAS  Google Scholar 

  52. Chu, Z. H.; Gao, X. C.; Wang, C. Y.; Wang, T. Y.; Wang, G. X. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 7301–7316.

    Article  CAS  Google Scholar 

  53. Jiang, B.; Tian, D.; Qiu, Y.; Song, X. Q.; Zhang, Y.; Sun, X.; Huang, H. H.; Zhao, C. H.; Guo, Z. K.; Fan, L. S. et al. High-index faceted nanocrystals as highly efficient bifunctional electrocatalysts for highperformance lithium-sulfur batteries. Nano-Micro Lett. 2021, 14, 40.

    Article  CAS  Google Scholar 

  54. Liu, G. L.; Yuan, C.; Zeng, P.; Cheng, C.; Yan, T. R.; Dai, K. H.; Mao, J.; Zhang, L. Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium-sulfur batteries. J. Energy Chem. 2022, 67, 73–81.

    Article  CAS  Google Scholar 

  55. Sun, F.; Qu, Z. B.; Wang, H.; Liu, X. Y.; Pei, T.; Han, R.; Gao, J. H.; Zhao, G. B.; Lu, Y. F. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Res. 2020, 14, 131–138.

    Article  Google Scholar 

  56. Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.

    CAS  Google Scholar 

  57. Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 2017, 29, 1703729.

    Article  Google Scholar 

  58. Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

    Article  CAS  Google Scholar 

  59. Wang, T. S.; Liu, X. B.; Wang, Y.; Fan, L. Z. High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries. Adv. Funct. Mater. 2021, 31, 2001973.

    Article  CAS  Google Scholar 

  60. Liu, F. F.; Xu, R.; Hu, Z. X.; Ye, S. F.; Zeng, S. F.; Yao, Y.; Li, S. Q.; Yu, Y. Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small 2019, 15, 1803734.

    Article  Google Scholar 

  61. He, Y. S.; Li, M. J.; Zhang, Y. G.; Shan, Z. Z.; Zhao, Y.; Li, J. D.; Liu, G. H.; Liang, C. Y.; Bakenov, Z.; Li, Q. All-purpose electrode design of flexible conductive scaffold toward high-performance Li-S batteries. Adv. Funct. Mater. 2020, 30, 2000613.

    Article  CAS  Google Scholar 

  62. Shi, H. D.; Qin, J. Q.; Huang, K.; Lu, P. F.; Zhang, C. F.; Dong, Y. F.; Ye, M.; Liu, Z. M.; Wu, Z. S. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2020, 59, 12147–12153.

    Article  CAS  Google Scholar 

  63. Yang, Y. F.; Wang, W. K.; Li, L. X.; Li, B. C.; Zhang, J. P. Stable cycling of Li-S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator. J. Mater. Chem. A 2020, 8, 3692–3700.

    Article  CAS  Google Scholar 

  64. Wang, M. Q.; Peng, Z.; Luo, W. W.; Ren, F. H.; Li, Z. D.; Zhang, Q.; He, H. Y.; Ouyang, C. Y.; Wang, D. Y. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure. Adv. Energy Mater. 2019, 9, 1802912.

    Article  Google Scholar 

  65. Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

    Article  Google Scholar 

  66. Zhai, P. B.; Wang, T. S.; Jiang, H. N.; Wan, J. Y.; Wei, Y.; Wang, L.; Liu, W.; Chen, Q.; Yang, W. W.; Cui, Y. et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures. Adv. Mater. 2021, 33, 2006247.

    Article  CAS  Google Scholar 

  67. Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from Outstanding Young Talents Project of Hebei High Education Institutions (BJ2021020) and the Natural Science Foundation of Hebei Province (B2019202289).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feichao Wu or Jingde Li.

Electronic Supplementary Material

12274_2022_4933_MOESM1_ESM.pdf

An orderly arranged dual-role MIL-53(Al) nanorods array rooted on carbon nanotube film for long-life and stable lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Li, Q., Jin, G. et al. An orderly arranged dual-role MIL-53(Al) nanorods array rooted on carbon nanotube film for long-life and stable lithium-sulfur batteries. Nano Res. 16, 2409–2420 (2023). https://doi.org/10.1007/s12274-022-4933-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4933-y

Keywords

Navigation