Skip to main content
Log in

Manganese-doped mesoporous polydopamine nanoagent for T1–T2 magnetic resonance imaging and tumor therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Theranostic nanodrugs combining magnetic resonance imaging (MRI) and cancer therapy have attracted extensive interest in cancer diagnosis and treatment. Herein, a manganese (Mn)-doped mesoporous polydopamine (Mn-MPDA) nanodrug incorporating the nitric oxide (NO) prodrug BNN6 and immune agonist R848 was developed. The nanodrug responded to the H+ and glutathione being enriched in tumor microenvironment to release R848 and Mn2+. The abundant Mn2+ produced through a Fenton-like reaction enabled a highly sensitive T1–T2 dual-mode MRI for monitoring the tumor accumulation process of the nanodrug, based on which an MRI-guided laser irradiation was achieved to trigger the NO gas therapy. Meanwhile, R848 induced the re-polarization of tumor-promoting M2-like macrophage to a tumoricidal M1 phenotype. Consequently, a potent synergistic antitumor effect was realized in mice bearing subcutaneous 4T1 breast cancer, which manifested the great promise of this multifunctional nanoplatform in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, Z. J.; Bai, R. L.; Munasinghe, J.; Shen, Z. Y.; Nie, L. M.; Chen, X. Y. T1-T2 dual-modal magnetic resonance imaging: From molecular basis to contrast agents. ACS Nano 2017, 11, 5227–5232.

    Article  CAS  Google Scholar 

  2. Glunde, K.; Artemov, D.; Penet, M. F.; Jacobs, M. A.; Bhujwalla, Z. M. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem. Rev. 2010, 110, 3043–3059.

    Article  CAS  Google Scholar 

  3. Zhou, Z. J.; Yang, L. J.; Gao, J. H.; Chen, X. Y. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 2019, 31, e1804567.

    Article  Google Scholar 

  4. Yang, M. D.; Ho, C. H.; Ruta, S.; Chantrell, R.; Krycka, K.; Hovorka, O.; Chen, F. R.; Lai, P. S.; Lai, C. H. Magnetic interaction of multifunctional core—shell nanoparticles for highly effective theranostics. Adv. Mater. 2018, 30, e1802444.

    Article  Google Scholar 

  5. Pablico-Lansigan, M. H.; Situ, S. F.; Samia, A. C. Magnetic particle imaging: Advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 2013, 5, 4040–4055.

    Article  CAS  Google Scholar 

  6. Zhou, Z. J.; Huang, D. T.; Bao, J. F.; Chen, Q. L.; Liu, G.; Chen, Z.; Chen, X. Y.; Gao, J. H. A synergistically enhanced T1-T2 dual-modal contrast agent. Adv. Mater. 2012, 24, 6223–6228.

    Article  CAS  Google Scholar 

  7. Bhooshan, N.; Giger, M.; Lan, L.; Li, H.; Marquez, A.; Shimauchi, A.; Newstead, G. M. Combined use of T2-weighted MRI and T1-weighted dynamic contrast-enhanced MRI in the automated analysis of breast lesions. Magn. Reson. Med. 2011, 66, 555–564.

    Article  Google Scholar 

  8. Gong, H.; Dong, Z. L.; Liu, Y. M.; Yin, S. N.; Cheng, L.; Xi, W. Y.; Xiang, J.; Liu, K.; Li, Y. G.; Liu, Z. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater. 2014, 24, 6492–6502.

    Article  CAS  Google Scholar 

  9. Krogsgaard, M.; Behrens, M. A.; Pedersen, J. S.; Birkedal, H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 2013, 14, 297–301.

    Article  CAS  Google Scholar 

  10. Guo, L. Q.; Liu, Q.; Li, G. L.; Shi, J. B.; Liu, J. Y.; Wang, T.; Jiang, G. B. A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale 2012, 4, 5864–5867.

    Article  CAS  Google Scholar 

  11. Wu, D.; Duan, X. H.; Guan, Q. Q.; Liu, J.; Yang, X.; Zhang, F.; Huang, P.; Shen, J.; Shuai, X. T.; Cao, Z. Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv. Funct. Mater. 2019, 29, 1900095.

    Article  Google Scholar 

  12. Chen, L. C.; Zhou, S. F.; Su, L. C.; Song, J. B. Gas-mediated cancer bioimaging and therapy. ACS Nano 2019, 13, 10887–10917.

    Article  CAS  Google Scholar 

  13. Xu, W. M.; Liu, L. Z.; Loizidou, M.; Ahmed, M.; Charles, I. G. The role of nitric oxide in cancer. Cell Res. 2002, 12, 311–320.

    Article  Google Scholar 

  14. Khan, F. H.; Dervan, E.; Bhattacharyya, D. D.; McAuliffe, J. D.; Miranda, K. M.; Glynn, S. A. The role of nitric oxide in cancer: Master regulator or not? Int. J. Mol. Sci. 2020, 21, 9393.

    Article  CAS  Google Scholar 

  15. Xu, J. S.; Zeng, F.; Wu, H.; Hu, C. P.; Yu, C. M.; Wu, S. Z. Preparation of a mitochondria-targeted and no-releasing nanoplatform and its enhanced pro-apoptotic effect on cancer cells. Small 2014, 10, 3750–3760.

    Article  CAS  Google Scholar 

  16. Lee, J.; Hlaing, S. P.; Hasan, N.; Kwak, D.; Kim, H.; Cao, J. F.; Yoon, I. S.; Yun, H.; Jung, Y.; Yoo, J. W. Tumor-penetrable nitric oxide-releasing nanoparticles potentiate local antimelanoma therapy. ACS Appl. Mater. Interfaces 2021, 13, 30383–30396.

    Article  CAS  Google Scholar 

  17. Szabo, C. Gasotransmitters in cancer: From pathophysiology to experimental therapy. Nat. Rev. Drug Discov. 2016, 15, 185–203.

    Article  CAS  Google Scholar 

  18. Dou, Y.; Zhao, F. S.; Li, X.; Guo, Y. Y. Monitoring nitric oxide-induced hypoxic tumor radiosensitization by radiation-activated nanoagents under BOLD/DWI imaging. ACS Biomater. Sci. Eng. 2021, 7, 5242–5254.

    Article  CAS  Google Scholar 

  19. Paul, S.; Pan, S.; Mukherjee, A.; De, P. Nitric oxide releasing delivery platforms: Design, detection, biomedical applications, and future possibilities. Mol. Pharm. 2021, 18, 3181–3205.

    Article  CAS  Google Scholar 

  20. Li, S. H.; Liu, R.; Jiang, X. X.; Qiu, Y.; Song, X. R.; Huang, G. M.; Fu, N. Y.; Lin, L. S.; Song, J. B.; Chen, X. Y. et al. Near-infrared light-triggered sulfur dioxide gas therapy of cancer. ACS Nano 2019, 13, 2103–2113.

    CAS  Google Scholar 

  21. He, Q. J. Precision gas therapy using intelligent nanomedicine. Biomater. Sci. 2017, 5, 2226–2230.

    Article  CAS  Google Scholar 

  22. Fan, J.; He, N. Y.; He, Q. J.; Liu, Y.; Ma, Y.; Fu, X.; Liu, Y. J.; Huang, P.; Chen, X. Y. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale 2015, 7, 20055–20062.

    Article  CAS  Google Scholar 

  23. Deng, Y. Y.; Jia, F.; Chen, S. Y.; Shen, Z. D.; Jin, Q.; Fu, G. S.; Ji, J. Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials 2018, 187, 55–65.

    Article  CAS  Google Scholar 

  24. Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.

    Article  CAS  Google Scholar 

  25. Xiao, H.; Guo, Y.; Li, B.; Li, X. X.; Wang, Y.; Han, S. S.; Cheng, D.; Shuai, X. T. M2-like tumor-associated macrophage-targeted codelivery of STAT6 inhibitor and IKKβ siRNA induces M2-to-M1 repolarization for cancer immunotherapy with low immune side effects. ACS Cent. Sci. 2020, 6, 1208–1222.

    Article  CAS  Google Scholar 

  26. Tang, X. Q.; Mo, C. F.; Wang, Y. S.; Wei, D. D.; Xiao, H. Y. Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 2013, 138, 93–104.

    Article  CAS  Google Scholar 

  27. DeNardo, D. G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382.

    Article  CAS  Google Scholar 

  28. Nadeem, A.; Siddiqui, N.; Al-Harbi, N. O.; Al-Harbi, M. M.; Ahmad, S. F. TLR-7 agonist attenuates airway reactivity and inflammation through Nrf2-mediated antioxidant protection in a murine model of allergic asthma. Int. J. Biochem. Cell Biol. 2016, 73, 53–62.

    Article  CAS  Google Scholar 

  29. Hemmi, H.; Kaisho, T.; Takeuchi, O.; Sato, S.; Sanjo, H.; Hoshino, K.; Horiuchi, T.; Tomizawa, H.; Takeda, K.; Akira, S. Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 2002, 3, 196–200.

    Article  CAS  Google Scholar 

  30. Lee, M.; Park, C. S.; Lee, Y. R.; Im, S. A.; Song, S.; Lee, C. K. Resiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cells. Arch. Pharm. Res. 2014, 37, 1234–1240.

    Article  CAS  Google Scholar 

  31. Loré, K.; Betts, M. R.; Brenchley, J. M.; Kuruppu, J.; Khojasteh, S.; Perfetto, S.; Roederer, M.; Seder, R. A.; Koup, R. A. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immunol. 2003, 171, 4320–4328.

    Article  Google Scholar 

  32. Wang, Y. K.; Liu, Y.; Wu, H. X.; Zhang, J. P.; Tian, Q. W.; Yang, S. P. Functionalized holmium-doped hollow silica nanospheres for combined sonodynamic and hypoxia-activated therapy. Adv. Funct. Mater. 2019, 29, 1805764.

    Article  Google Scholar 

  33. Hao, Y. N.; Zheng, A. Q.; Guo, T. T.; Shu, Y.; Wang, J. H.; Johnson, O.; Chen, W. Glutathione triggered degradation of polydopamine to facilitate controlled drug release for synergic combinational cancer treatment. J. Mater. Chem. B 2019, 7, 6742–6750.

    Article  CAS  Google Scholar 

  34. Ma, Z. W.; Xiang, X. Q.; Li, S. Y.; Xie, P.; Gong, Q.; Goh, B. C.; Wang, L. Z. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin. Cancer Biol. 2022, 80, 379–390.

    Article  CAS  Google Scholar 

  35. Sung, Y. C.; Jin, P. R.; Chu, L. A.; Hsu, F. F.; Wang, M. R.; Chang, C. C.; Chiou, S. J.; Qiu, J. T.; Gao, D. Y.; Lin, C. C. et al. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol. 2019, 14, 1160–1169.

    Article  CAS  Google Scholar 

  36. Ridnour, L. A.; Isenberg, J. S.; Espey, M. G.; Thomas, D. D.; Roberts, D. D.; Wink, D. A. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. USA 2005, 102, 13147–13152.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51933011 and 31971296), the Key Areas Research and Development Program of Guangzhou (No. 202007020006), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515010523), Guangzhou Science and Technology Bureau (No. 202102010181), and Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument (Sun Yat-sen University, No. 2020B1212060077).

The animal study protocol was approved by the Institutional Animal Care and Use Committee at Sun Yat-sen University (SYSU-IACUC-2021-000225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xintao Shuai or Zhong Cao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Yang, X., Xu, Y. et al. Manganese-doped mesoporous polydopamine nanoagent for T1–T2 magnetic resonance imaging and tumor therapy. Nano Res. 16, 2991–3003 (2023). https://doi.org/10.1007/s12274-022-4877-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4877-4

Keywords

Navigation