Skip to main content
Log in

Engineering Janus gold nanorod—titania heterostructures with enhanced photocatalytic antibacterial activity against multidrug-resistant bacterial infection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic antibacterial approach shows great potential in treating multidrug-resistant bacterial infections. However, the bactericidal efficiency heavily depends on the photocatalytic activity of semiconductor materials, which is limited by the fast recombination of photogenerated electron-hole pairs. Janus nano-heterostructures with spatial control growth of TiO2 nanoparticles (NPs) at one end of gold nanorods (Au NRs) are designed via surface ligand regulation for photocatalytic sterilization and infected wound healing. The asymmetric nanostructure of Janus gold nanorod-titanium dioxide nanoparticles (Janus AuNR-TiO2 NPs) promotes the directional migration of charge carriers and is more conducive to the spatial separation of electron—hole pairs. Moreover, the injection of hot electrons and enhancement of plasmon near-fields from the surface plasmon resonance (SPR) effect further improve the photocatalytic efficiency of Janus AuNR-TiO2 NPs. Under simulated sunlight irradiation, large amounts of reactive oxygen species (ROS) are generated for photocatalytic antibacterial activity. Enhanced bactericidal efficiency up to 99.99% against methicillin-resistant Staphylococcus aureus (MRSA) is achieved in vitro. Furthermore, Janus AuNR-TiO2 NPs exhibit superior biocompatibility, structural stability, and also remarkably accelerate MRSA-infected wound healing. Taking the above all into consideration, Janus AuNR-TiO2 NPs, as an efficient antibacterial photocatalyst, offers a promising strategy for MRSA infectious therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen, V. N.; Zhao, Z.; Tang, B. Z.; Yoon, J. Organic photosensitizers for antimicrobial phototherapy. Chem. Soc. Rev. 2022, 51, 3324–3340.

    Article  CAS  Google Scholar 

  2. Tang, N.; Zhang, R. J.; Zheng, Y. B.; Wang, J.; Khatib, M.; Jiang, X.; Zhou, C.; Omar, R.; Saliba, W.; Wu, W. W. et al. Highly efficient self-healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Adv. Mater. 2022, 34, 2270025.

    Article  Google Scholar 

  3. Chen, M.; Winston, D. D.; Wang, M.; Niu, W.; Cheng, W.; Guo, Y.; Wang, Y. D.; Luo, M.; Xie, C. X.; Leng, T. T. et al. Hierarchically multifunctional bioactive nanoglass for integrated tumor/infection therapy and impaired wound repair. Mater. Today 2022, 53, 27–40.

    Article  CAS  Google Scholar 

  4. Zhou, B. S.; Sun, X. L.; Dong, B.; Yu, S. Y.; Cheng, L.; Hu, S. T.; Liu, W.; Xu, L.; Bai, X.; Wang, L. et al. Antibacterial PDT nanoplatform capable of releasing therapeutic gas for synergistic and enhanced treatment against deep infections. Theranostics 2022, 12, 2580–2597.

    Article  CAS  Google Scholar 

  5. Wang, Z. Q.; Koirala, B.; Hernandez, Y.; Zimmerman, M.; Park, S.; Perlin, D. S.; Brady, S. F. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 2022, 601, 606–611.

    Article  CAS  Google Scholar 

  6. Sun, D.; Pang, X.; Cheng, Y.; Ming, J.; Xiang, S. J.; Zhang, C.; Lv, P.; Chu, C. C.; Chen, X. L.; Liu, G. et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano 2020, 14, 2063–2076.

    Article  CAS  Google Scholar 

  7. Zeng, J. Y.; Guo, Z. C.; Wang, Y. H.; Qin, Z. J.; Ma, Y.; Jiang, H.; Weizmann, Y.; Wang, X. M. Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy. Nano Res. 2022, 15, 4164–4174.

    Article  CAS  Google Scholar 

  8. Stracy, M.; Snitser, O.; Yelin, I.; Amer, Y.; Parizade, M.; Katz, R.; Rimler, G.; Wolf, T.; Herzel, E.; Koren, G. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 2022, 375, 889–894.

    Article  CAS  Google Scholar 

  9. Ma, L. M.; Xie, X.; Liu, H. H.; Huang, Y.; Wu, H. M.; Jiang, M. L.; Xu, P. F.; Ye, X. Y.; Zhou, C. L. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 2020, 10, 1373–1390.

    Article  CAS  Google Scholar 

  10. Pan, X. T.; Wu, N. E.; Tian, S. Y.; Guo, J.; Wang, C. H.; Sun, Y.; Huang, Z. Z.; Chen, F. Z.; Wu, Q. Y.; Jing, Y. et al. Inhalable MOF-derived nanoparticles for sonodynamic therapy of bacterial pneumonia. Adv. Funct. Mater. 2022, 32, 2112145.

    Article  CAS  Google Scholar 

  11. Chen, L. F.; Xing, S. H.; Lei, Y. L.; Chen, Q. S.; Zou, Z.; Quan, K.; Qing, Z.; Liu, J. W.; Yang, R. H. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew. Chem., Int. Ed. 2021, 60, 23534–23539.

    Article  CAS  Google Scholar 

  12. Li, J. F.; Li, Z. Y.; Liu, X. M.; Li, C. Y.; Zheng, Y. F.; Yeung, K. W. K.; Cui, Z. D.; Liang, Y. Q.; Zhu, S. L.; Hu, W. B. et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat. Commun. 2021, 12, 1224.

    Article  CAS  Google Scholar 

  13. Malysheva, A.; Ivask, A.; Doolette, C. L.; Voelcker, N. H.; Lombi, E. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol. 2021, 16, 926–932.

    Article  CAS  Google Scholar 

  14. Wu, M. Q.; Zhang, Z. Y.; Liu, Z. R.; Zhang, J. M.; Zhang, Y. L.; Ding, Y. M.; Huang, T.; Xiang, D. L.; Wang, Z.; Dai, Y. J. et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104.

    Article  CAS  Google Scholar 

  15. Matsunaga, T.; Tomoda, R.; Nakajima, T.; Wake, H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 1985, 29, 211–214.

    Article  CAS  Google Scholar 

  16. Wang, J. J.; Wang, Y.; Wang, W.; Peng, T.; Liang, J. J.; Li, P.; Pan, D. Q.; Fan, Q. H.; Wu, W. S. Visible light driven Ti3+ self-doped TiO2 for adsorption—photocatalysis of aqueous U(VI). Environ. Pollut. 2020, 262, 114373.

    Article  CAS  Google Scholar 

  17. Duan, S.; Wu, R. N.; Xiong, Y. H.; Ren, H. M.; Lei, C. Y.; Zhao, Y. Q.; Zhang, X. Y.; Xu, F. J. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog. Mater. Sci. 2022, 125, 100887.

    Article  CAS  Google Scholar 

  18. Wang, D.; Wang, H. Z.; Ji, L.; Xu, M.; Bai, B.; Wan, X. D.; Hou, D. Y.; Qiao, Z. Y.; Wang, H.; Zhang, J. T. Hybrid plasmonic nanodumbbells engineering for multi-intensified second near-infrared light induced photodynamic therapy. ACS Nano. 2021, 15, 8694–8705.

    Article  CAS  Google Scholar 

  19. Zeng, J. Y.; Li, Z. M.; Jiang, H.; Wang, X. M. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Mater. Horiz. 2021, 8, 2964–3008.

    Article  CAS  Google Scholar 

  20. Li, L.; Cao, S. J.; Wu, Z. H.; Guo, R. Q.; Xie, L.; Wang, L. Y.; Tang, Y. J.; Li, Q.; Luo, X. L.; Ma, L. et al. Modulating electron transfer in vanadium-based artificial enzymes for enhanced ROS-catalysis and disinfection. Adv. Mater. 2022, 34, 2108646.

    Article  CAS  Google Scholar 

  21. Tu, Y. S.; Li, P.; Sun, J. J.; Jiang, J.; Dai, F. F.; Li, C. Z.; Wu, Y. Y.; Chen, L.; Shi, G. S.; Tan, Y. W. et al. Remarkable antibacterial activity of reduced graphene oxide functionalized by copper ions. Adv. Funct. Mater. 2021, 31, 2008018.

    Article  CAS  Google Scholar 

  22. Yang, M. G.; Qiu, S.; Coy, E.; Li, S. J.; Załeski, K.; Zhang, Y.; Pan, H. B.; Wang, G. C. NIR-responsive TiO2 biometasurfaces: Toward in situ photodynamic antibacterial therapy for biomedical implants. Adv. Mater. 2022, 34, 2106314.

    Article  CAS  Google Scholar 

  23. Zeng, X. K.; Wang, Z. Y.; Wang, G.; Gengenbach, T. R.; McCarthy, D. T.; Deletic, A.; Yu, J. G.; Zhang, X. W. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl. Catal. B: Environ. 2017, 218, 163–173.

    Article  CAS  Google Scholar 

  24. Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

    Article  CAS  Google Scholar 

  25. Li, X. Y.; Sun, H. B.; Xie, Y. Y.; Liang, Y. S.; Gong, X. M.; Qin, P. F.; Jiang, L. B.; Guo, J. Y.; Liu, C.; Wu, Z. B. Principles, synthesis and applications of dual Z-scheme photocatalysts. Coord. Chem. Rev. 2022, 467, 214596.

    Article  CAS  Google Scholar 

  26. Liu, Y. W.; Cullen, D. A.; Lian, T. Q. Slow auger recombination of trapped excitons enables efficient multiple electron transfer in CdS-Pt nanorod heterostructures. J. Am. Chem. Soc. 2021, 143, 20264–20273.

    Article  CAS  Google Scholar 

  27. Gudjonsdottir, S.; Van Der Stam, W.; Kirkwood, N.; Evers, W. H.; Houtepen, A. J. The role of dopant ions on charge injection and transport in electrochemically doped quantum dot films. J. Am. Chem. Soc. 2018, 140, 6582–6590.

    Article  CAS  Google Scholar 

  28. Gong, S. Q.; Niu, Y. L.; Teng, X.; Liu, X.; Xu, M. Z.; Xu, C.; Meyer, T. J.; Chen, Z. F. Visible light-driven, selective CO2 reduction in water by in-doped Mo2C based on defect engineering. Appl. Catal. B:Environ. 2022, 310, 121333.

    Article  CAS  Google Scholar 

  29. Zhou, D. X.; Xue, X. D.; Wang, X.; Luan, Q. J.; Li, A.; Zhang, L. G.; Li, B. Z.; Dong, W. J.; Wang, G.; Hou, C. M. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: Modulating charge flow and balancing H adsorption/desorption. Appl. Catal. B: Environ. 2022, 310, 121337.

    Article  CAS  Google Scholar 

  30. Zhao, J. M.; Liu, L. T.; Zhang, Y.; Feng, Z. Y.; Zhao, F. F.; Wang, W. S. Light-responsive color switching of self-doped TiO2-x/WO3·0.33H2O hetero-nanoparticles for highly efficient rewritable paper. Nano Res. 2021, 14, 165–171.

    Article  CAS  Google Scholar 

  31. Tian, N.; Hu, C.; Wang, J. J.; Zhang, Y. H.; Ma, T. Y.; Huang, H. W. Layered bismuth-based photocatalysts. Coord. Chem. Rev. 2022, 463, 214515.

    Article  CAS  Google Scholar 

  32. Liao, G. F.; Tao, X. Y.; Fang, B. Z. An innovative synthesis strategy for high-efficiency and defects-switchable-hydrogenated TiO2 photocatalysts. Matter 2022, 5, 377–379.

    Article  CAS  Google Scholar 

  33. Wang, T.; Chen, L.; Chen, C.; Huang, M. T.; Huang, Y. J.; Liu, S. J.; Li, B. X. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano 2022, 16, 2306–2318.

    Article  CAS  Google Scholar 

  34. Huang, H. W.; Verhaeghe, D.; Weng, B.; Ghosh, B.; Zhang, H. W.; Hofkens, J.; Steele, J. A.; Roeffaers, M. B. J. Metal halide perovskite based heterojunction photocatalysts. Angew. Chem., Int. Ed. 2022, 61, e202203261.

    CAS  Google Scholar 

  35. Torras, M.; Molet, P.; Soler, L.; Llorca, J.; Roig, A.; Mihi, A. Au/TiO2 2D-photonic crystals as UV—visible photocatalysts for H2 production. Adv. Energy Mater. 2022, 12, 2103733.

    Article  CAS  Google Scholar 

  36. Lu, Z. X.; Wu, X.; Chen, N. Y.; Cao, M. F.; Sartin, M. M.; Ren, B. Photoinduced charge transfer from a semiconductor to a metal probed at the single-nanoparticle level. ACS Energy Lett. 2021, 6, 3473–3480.

    Article  CAS  Google Scholar 

  37. Khan, R.; Naveen, M. H.; Abbas, M. A.; Lee, J.; Kim, H.; Bang, J. H. Photoelectrochemistry of Au nanocluster-sensitized TiO2: Intricacy arising from the light-induced transformation of nanoclusters into nanoparticles. ACS Energy Lett. 2021, 6, 24–32.

    Article  CAS  Google Scholar 

  38. Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310–2314.

    Article  CAS  Google Scholar 

  39. Cai, R.; Xiang, H. D.; Yang, D.; Lin, K. T.; Wu, Y. Z.; Zhou, R. Y.; Gu, Z. J.; Yan, L.; Zhao, Y. L.; Tan, W. H. Plasmonic AuPt@CuS heterostructure with enhanced synergistic efficacy for radiophotothermal therapy. J. Am. Chem. Soc. 2021, 143, 16113–16127.

    Article  CAS  Google Scholar 

  40. Liang, S.; Deng, X. R.; Chang, Y.; Sun, C. Q.; Shao, S.; Xie, Z. X.; Xiao, X.; Ma, P.; Zhang, H. Y.; Cheng, Z. Y. et al. Intelligent hollow Pt-CuS Janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019, 19, 4134–4145.

    Article  CAS  Google Scholar 

  41. Ben-Shahar, Y.; Philbin, J. P.; Scotognella, F.; Ganzer, L.; Cerullo, G.; Rabani, E.; Banin, U. Charge carrier dynamics in photocatalytic hybrid semiconductor-metal nanorods: Crossover from auger recombination to charge transfer. Nano Lett. 2018, 18, 5211–5216.

    Article  CAS  Google Scholar 

  42. Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1,200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.

    Article  CAS  Google Scholar 

  43. Chen, T.; Chen, G.; Xing, S. X.; Wu, T.; Chen, H. Y. Scalable routes to Janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles. Chem. Mater. 2010, 22, 3826–3828.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21874024, 32101074, and U21A20377), the Joint Research Program of Health and Education Commission of Fujian Province (No. 2019-WJ-20), and the Natural Science Foundation of Fujian Province (No. 2020J02012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luntao Liu, Jing Mu or Jibin Song.

Electronic Supplementary Material

12274_2022_4876_MOESM1_ESM.pdf

Engineering Janus gold nanorod—titania heterostructures with enhanced photocatalytic antibacterial activity against multidrug-resistant bacterial infection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huo, H., Gao, X. et al. Engineering Janus gold nanorod—titania heterostructures with enhanced photocatalytic antibacterial activity against multidrug-resistant bacterial infection. Nano Res. 16, 2049–2058 (2023). https://doi.org/10.1007/s12274-022-4876-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4876-5

Keywords

Navigation