Skip to main content
Log in

Enhanced cellular infiltration of tissue-engineered scaffolds fabricated by PLLA nanogrooved microfibers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanofibers prepared by electrospinning technique are extensively applied as building blocks for tissue-engineered scaffolds because of their high resemblance to natural extracellular matrix (ECM) and the capacity to provide more cell contacts than microfibers. However, conventional electrospun scaffolds only allow superficial growth of cells in that the size of inter-fiber pores is much smaller than the size of cells. By taking advantage of the positive correlation between fiber diameter and pore size in fibrous materials, we report here a simple method for fabricating poly-L-lactic acid (PLLA) microfiber scaffold with longitudinally aligned nanogrooves on fiber surface. Three-dimensional (3D) and structurally stable PLLA scaffolds with an average pore size of 16 µm were successfully acquired when the fiber diameter was 4.22 µm. The topographical cues from nanogrooves ensured fast cell adhesion of scaffolds, whilst the large inter-fiber pores enabled sufficient cell infiltration. Moreover, the nanogrooved microfiber scaffold showed improved curative effects of wound healing in a rat skin injury model, making us believe its practical significance in biomedical areas that requires fast cell adhesion and high cell infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weigel, T.; Malkmus, C.; Weigel, V.; Wußmann, M.; Berger, C.; Brennecke, J.; Groeber-Becker, F.; Hansmann, J. Fully synthetic 3D fibrous scaffolds for stromal tissues-replacement of animal-derived scaffold materials demonstrated by multilayered skin. Adv. Mater. 2022, 34, 2106780.

    Article  CAS  Google Scholar 

  2. Zhang, B. L.; Shen, M. W.; Shi, X. Y. Preparation and biomedical applications of electrospun short fibers. J. Tex. Res. 2021, 42, 1–8.

    Google Scholar 

  3. Gao, X. Z., Han, S. Y., Zhang, R. H.; Liu, G. T.; Wu, J. Progress in electrospun composite nanofibers: Composition, performance and applications for tissue engineering. J. Mater. Chem. B 2019, 7, 7075–7089.

    Article  CAS  Google Scholar 

  4. Jia, L.; Chen, L. N.; Zhang, H. X.; Qin, X. H. Performance of composite polyurethane/collagen nanofiber scaffolds. J. Tex. Res. 2016, 37, 1–6.

    Google Scholar 

  5. Wu, H. J.; Fan, J. T.; Chu, C. C.; Wu, J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J. Mater. Sci. Mater. Med. 2010, 21, 3207–3215.

    Article  CAS  Google Scholar 

  6. Guo, Y. N.; Huang, J.; Fang, Y. F.; Huang, H.; Wu, J. 1D, 2D, and 3D scaffolds promoting angiogenesis for enhanced wound healing. Chem. Eng. J. 2022, 437, 134690.

    Article  CAS  Google Scholar 

  7. Lu, J. J.; Sun, X.; Yin, H. Y.; Shen, X. Z.; Yang, S. H.; Wang, Y.; Jiang, W. L.; Sun, Y.; Zhao, L. Y.; Sun, X. D. et al. A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. Nano Res. 2018, 11, 4599–4613.

    Article  CAS  Google Scholar 

  8. Yan, Z. W.; Qian, Y.; Fan, C. Y. Biomimicry in 3D printing design: Implications for peripheral nerve regeneration. Regen. Med. 2021, 16, 683–701.

    Article  CAS  Google Scholar 

  9. Zhou, Y.; Liu, G. T.; Huang, H.; Wu, J. Advances and impact of arginine-based materials in wound healing. J. Mater. Chem. B 2021, 9, 6738–6750.

    Article  CAS  Google Scholar 

  10. Zouhair, S.; Aguiari, P.; Lop, L.; Vásquez-Rivera, A.; Filippi, A.; Romanato, F.; Korossis, S.; Wolkers, W. F.; Gerosa, G. Preservation strategies for decellularized pericardial scaffolds for off-the-shelf availability. Acta Biomater. 2019, 84, 208–221.

    Article  CAS  Google Scholar 

  11. Wu, J. L.; Hong, Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact. Mater. 2016, 1, 56–64.

    Article  Google Scholar 

  12. Wang, H. B.; Mullins, M. E.; Cregg, J. M.; McCarthy, C. W.; Gilbert, R. J. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 2010, 6, 2970–2978.

    Article  CAS  Google Scholar 

  13. Sisson, K.; Zhang, C.; Farach-Carson, M. C.; Chase, D. B.; Rabolt, J. F. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J. Biomed. Mater. Res. Part A 2010, 94A, 1312–1320.

    CAS  Google Scholar 

  14. Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 2006, 12, 1197–1211.

    Article  CAS  Google Scholar 

  15. Mahjour, S. B.; Sefat, F.; Polunin, Y.; Wang, L. C.; Wang, H. J. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. J. Biomed. Mater. Res. Part A 2016, 104, 1479–1488.

    Article  CAS  Google Scholar 

  16. Loh, X. J.; Peh, P.; Liao, S. S.; Sng, C.; Li, J. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J. Control. Release 2010, 143, 175–182.

    Article  CAS  Google Scholar 

  17. Blakeney, B. A.; Tambralli, A.; Anderson, J. M.; Andukuri, A.; Lim, D. J.; Dean, D. R.; Jun, H. W. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 2011, 32, 1583–1590.

    Article  CAS  Google Scholar 

  18. Zhong, H. L.; Huang, J.; Wu, J.; Du, J. H. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res. 2022, 15, 787–804.

    Article  CAS  Google Scholar 

  19. Lei, C.; Cao, Y. X.; Hosseinpour, S.; Gao, F.; Liu, J. Y.; Fu, J. Y.; Staples, R.; Ivanovski, S.; Xu, C. Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Res. 2021, 14, 770–777.

    Article  CAS  Google Scholar 

  20. Baker, B. M.; Gee, A. O.; Metter, R. B.; Nathan, A. S.; Marklein, R. A.; Burdick, J. A.; Mauck, R. L. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008, 29, 2348–2358.

    Article  CAS  Google Scholar 

  21. Jin, G.; Lee, S.; Kim, S. H.; Kim, M.; Jang, J. H. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity. Biomed. Microdevices 2014, 16, 793–804.

    Article  CAS  Google Scholar 

  22. Jin, G.; Shin, M.; Kim, S. H.; Lee, H.; Jang, J. H. SpONGE: Spontaneous organization of numerous-layer generation by electrospray. Angew. Chem., Int. Ed. 2015, 54, 7587–7591.

    Article  CAS  Google Scholar 

  23. Li, Y.; Wang, J.; Qian, D. J.; Chen, L.; Mo, X. M.; Wang, L.; Wang, Y.; Cui, W. G. Electrospun fibrous sponge via short fiber for mimicking 3D ECM. J. Nanobiotechnol. 2021, 19, 131.

    Article  CAS  Google Scholar 

  24. Xu, Z. J.; Liu, G. T.; Li, Q.; Wu, J. A novel hydrogel with glucose-responsive hyperglycemia regulation and antioxidant activity for enhanced diabetic wound repair. Nano Res. 2022, 15, 5305–5315.

    Article  CAS  Google Scholar 

  25. Balguid, A.; Mol, A.; van Marion, M. H.; Bank, R. A.; Bouten, C. V. C.; Baaijens, F. P. T. Tailoring fiber diameter in electrospun poly(ε-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. Part A 2009, 15, 437–444.

    Article  CAS  Google Scholar 

  26. Eichhorn, S. J.; Sampson, W. W. Statistical geometry of pores and statistics of porous nanofibrous assemblies. J. Roy. Soc. Interface 2005, 2, 309–318.

    Article  Google Scholar 

  27. Hu, W. W.; Wu, Y. C.; Hu, Z. C. The development of an alginate/polycaprolactone composite scaffold for in situ transfection application. Carbohydr. Polym. 2018, 183, 29–36.

    Article  CAS  Google Scholar 

  28. Zhao, S. C.; Li, L.; Wang, H.; Zhang, Y. D.; Cheng, X. G.; Zhou, N.; Rahaman, M. N.; Liu, Z. T.; Huang, W. H.; Zhang, C. Q. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials 2015, 53, 379–391.

    Article  CAS  Google Scholar 

  29. Shanmugasundaram, O. L.; Ahmed, K. S. Z.; Sujatha, K.; Ponnmurugan, P.; Srivastava, A.; Ramesh, R.; Sukumar, R.; Elanithi, K. Fabrication and characterization of chicken feather keratin/polysaccharides blended polymer coated nonwoven dressing materials for wound healing applications. Mater. Sci. Eng.: C 2018, 92, 26–33.

    Article  CAS  Google Scholar 

  30. Yang, H. J.; Ye, Q.; Zhou, Y. S.; Xiang, Y. L.; Xing, Q.; Dong, X.; Wang, D. J.; Xu, W. L. Formation, morphology and control of highperformance biomedical polyurethane porous membranes by water micro-droplet induced phase inversion. Polymer 2014, 55, 5500–5508.

    Article  CAS  Google Scholar 

  31. Qian, Y.; Xu, Y.; Yan, Z. W.; Jin, Y.; Chen, X.; Yuan, W. E.; Fan, C. Y. Boron nitride nanosheets functionalized channel scaffold favors microenvironment rebalance cocktail therapy for piezocatalytic neuronal repair. Nano Energy 2021, 83, 105779.

    Article  CAS  Google Scholar 

  32. Xian, C. H.; Zhang, Z.; You, X. R., Fang, Y. F.; Wu, J. Nanosized fat emulsion injection modulating local microenvironment promotes angiogenesis in chronic wound healing. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202202410.

  33. Barriga, E. H.; Franze, K.; Charras, G.; Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 2018, 554, 523–527.

    Article  CAS  Google Scholar 

  34. Ming, G. L.; Wong, S. T.; Henley, J.; Yuan, X. B.; Song, H. J.; Spitzer, N. C.; Poo, M. M. Adaptation in the chemotactic guidance of nerve growth cones. Nature 2002, 417, 411–418.

    Article  CAS  Google Scholar 

  35. Ko, Y. G.; Co, C. C.; Ho, C. C. Directing cell migration in continuous microchannels by topographical amplification of natural directional persistence. Biomaterials 2013, 34, 353–360.

    Article  CAS  Google Scholar 

  36. Bienert, M.; Hoss, M.; Bartneck, M.; Weinandy, S.; Böbel, M.; Jockenhövel, S.; Knüchel, R.; Pottbacker, K.; Wöltje, M.; Jahnen-Dechent, W. et al. Growth factor-functionalized silk membranes support wound healing in vitro. Biomed. Mater. 2017, 12, 045023.

    Article  Google Scholar 

  37. Li, J.; Zhang, Y. P.; Kirsner, R. S. Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 2003, 60, 107–114.

    Article  CAS  Google Scholar 

  38. Schiffmann, L. M.; Werthenbach, J. P.; Heintges-Kleinhofer, F.; Seeger, J. M.; Fritsch, M.; Günther, S. D.; Willenborg, S.; Brodesser, S.; Lucas, C.; Jüngst, C. et al. Mitochondrial respiration controls neoangiogenesis during wound healing and tumour growth. Nat. Commun. 2020, 11, 3653.

    Article  CAS  Google Scholar 

  39. Jiang, J.; Carlson, M. A.; Teusink, M. J.; Wang, H. J.; MacEwan, M. R.; Xie, J. W. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique. ACS Biomater. Sci. Eng. 2015, 1, 991–1001.

    Article  CAS  Google Scholar 

  40. Kennedy, K. M.; Bhaw-Luximon, A.; Jhurry, D. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater. 2017, 50, 41–55.

    Article  CAS  Google Scholar 

  41. Hochleitner, G.; Jüngst, T.; Brown, T. D.; Hahn, K.; Moseke, C.; Jakob, F.; Dalton, P. D.; Groll, J. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication 2015, 7, 035002.

    Article  Google Scholar 

  42. Ekaputra, A. K.; Prestwich, G. D.; Cool, S. M.; Hutmacher, D. W. Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 2008, 9, 2097–2103.

    Article  CAS  Google Scholar 

  43. Nam, J.; Huang, Y.; Agarwal, S.; Lannutti, J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007, 13, 2249–2257.

    Article  CAS  Google Scholar 

  44. Kim, S. J.; Jang, D. H.; Park, W. H.; Min, B. M. Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 2010, 51, 1320–1327.

    Article  CAS  Google Scholar 

  45. Pham, Q. P.; Sharma, U.; Mikos, A. G. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 2006, 7, 2796–2805.

    Article  CAS  Google Scholar 

  46. Zhu, Y. Z.; Liang, H.; Liu, X. M.; Wu, J.; Yang, C.; Wong, T. M.; Kwan, K. Y. H.; Cheung, K. M. C.; Wu, S. L.; Yeung, K. W. K. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci. Adv. 2021, 7, eabf6654.

    Article  CAS  Google Scholar 

  47. Chen, W. Q.; Villa-Diaz, L. G.; Sun, Y. B.; Weng, S. N.; Kim, J. K.; Lam, R. H. W.; Han, L.; Fan, R.; Krebsbach, P. H.; Fu, J. P. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 2012, 6, 4094–4103.

    Article  CAS  Google Scholar 

  48. Brydone, A. S.; Dalby, M. J.; Berry, C. C.; Meek, R. M. D.; McNamara, L. E. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts. Biomed. Mater. 2011, 6, 035005.

    Article  Google Scholar 

  49. Kim, D. H.; Han, K.; Gupta, K.; Kwon, K. W.; Suh, K. Y.; Levchenko, A. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 2009, 30, 5433–5444.

    Article  CAS  Google Scholar 

  50. Kaiser, J. P.; Reinmann, A.; Bruinink, A. The effect of topographic characteristics on cell migration velocity. Biomaterials 2006, 27, 5230–5241.

    Article  CAS  Google Scholar 

  51. Lim, J.; Choi, A.; Kim, H. W.; Yoon, H.; Park, S. M.; Tsai, C. H. D.; Kaneko, M.; Kim, D. S. Constrained adherable area of nanotopographic surfaces promotes cell migration through the regulation of focal adhesion via focal adhesion kinase/Rac1 activation. ACS Appl. Mater. Interfaces 2018, 10, 14331–14341.

    Article  CAS  Google Scholar 

  52. Shin, J. Y.; Kim, H. N.; Bhang, S. H.; Yoon, J. K.; Suh, K. Y.; Jeon, N. L.; Kim, B. S. Topography-guided control of local migratory behaviors and protein expression of cancer cells. Adv. Healthc. Mater. 2017, 6, 1700155.

    Article  Google Scholar 

  53. Zhan, L.; Deng, J. X.; Ke, Q. F.; Li, X.; Ouyang, Y. M.; Huang, C.; Liu, X. Q.; Qian, Y. Grooved fibers: Preparation principles through electrospinning and potential applications. Adv. Fiber Mater. 2022, 4, 203–213.

    Article  CAS  Google Scholar 

  54. Chen, X.; Xu, Y.; Zhang, W. X.; Xu, K. L.; Ke, Q. F.; Jin, X. Y.; Huang, C. Online fabrication of ultralight, three-dimensional, and structurally stable ultrafine fibre assemblies with a double-porous feature. Nanoscale 2019, 11, 8185–8195.

    Article  CAS  Google Scholar 

  55. Liang, M. M.; Chen, X.; Xu, Y.; Zhu, L.; Jin, X. Y.; Huang, C. Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity. Nanoscale 2017, 9, 16214–16222.

    Article  CAS  Google Scholar 

  56. Huang, C.; Ouyang, Y. M; Niu, H. T.; He, N. F.; Ke, Q. F.; Jin, X. Y.; Li, D. W.; Fang, J.; Liu, W. J.; Fan, C. Y. et al. Nerve guidance conduits from aligned nanofibers: Improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl. Mater. Interfaces 2015, 7, 7189–7196.

    Article  CAS  Google Scholar 

  57. Supaphol, P.; Mit-Uppatham, C.; Nithitanakul, M. Ultrafine electrospun polyamide-6 fibers: Effect of emitting electrode polarity on morphology and average fiber diameter. J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 3699–3712.

    Article  CAS  Google Scholar 

  58. Huang, C.; Tang, Y. W.; Liu, X.; Sutti, A.; Ke, Q. F.; Mo, X. M.; Wang, X. G.; Morsi, Y.; Lin, T. Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth. Soft Matter 2011, 7, 10812–10817.

    Article  CAS  Google Scholar 

  59. Gao, Q.; Gu, H. B.; Zhao, P.; Zhang, C. M.; Cao, M. Y.; Fu, J. Z.; He, Y. Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Mater. Des. 2018, 157, 159–169.

    Article  CAS  Google Scholar 

  60. Taskin, M. B.; Xia, D.; Besenbacher, F.; Dong, M. D.; Chen, M. L. Nanotopography featured polycaprolactone/polyethyleneoxide microfibers modulate endothelial cell response. Nanoscale 2017, 9, 9218–9229.

    Article  CAS  Google Scholar 

  61. Badami, A. S.; Kreke, M. R.; Thompson, M. S.; Riffle, J. S.; Goldstein, A. S. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2006, 27, 596–606.

    Article  CAS  Google Scholar 

  62. Zhang, Y. Z.; Ouyang, H. W.; Lim, C. T.; Ramakrishna, S.; Huang, Z. M. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005, 72B, 156–165.

    Article  CAS  Google Scholar 

  63. Sharma, P.; Ng, C.; Jana, A.; Padhi, A.; Szymanski, P.; Lee, J. S. H.; Behkam, B.; Nain, A. S. Aligned fibers direct collective cell migration to engineer closing and nonclosing wound gaps. Mol. Biol. Cell 2017, 28, 2579–2588.

    Article  CAS  Google Scholar 

  64. Fong, E.; Tzlil, S.; Tirrell, D. A. Boundary crossing in epithelial wound healing. Proc. Natl. Acad. Sci. USA 2010, 107, 19302–19307.

    Article  CAS  Google Scholar 

  65. Mak, K. M.; Png, C. Y. M.; Lee, D. J. Type V collagen in health, disease, and fibrosis. Anat. Rec. 2016, 299, 613–629.

    Article  CAS  Google Scholar 

  66. Peterson, L. W.; Artis, D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153.

    Article  CAS  Google Scholar 

  67. Yang, W. S.; Roh, H. W.; Lee, W. K.; Ryu, G. H. Evaluation of functions and tissue compatibility of poly (D,L-lactic-co-glycolic acid) seeded with human dermal fibroblasts. J. Biomater. Sci., Polym. Ed. 2006, 17, 151–162.

    Article  CAS  Google Scholar 

  68. Wang, L.; Li, G. Y.; Ren, L.; Kong, X. D.; Wang, Y. G.; Han, X. G.; Jiang, W. B.; Dai, K. R.; Yang, K.; Hao, Y. Q. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process. Int. J. Nanomedicine 2017, 12, 8443–8457.

    Article  CAS  Google Scholar 

  69. Strunck, J. L.; Cutler, B.; Latour, E.; Seminario-Vidal, L.; Ortega-Loayza, A. G. Wound care dressings for pyoderma gangrenosum. J. Am. Acad. Dermatol. 2022, 86, 458–460.

    Article  Google Scholar 

  70. Liu, X.; Lin, T.; Fang, J.; Yao, G.; Zhao, H. Q.; Dodson, M.; Wang, X. G. In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. J. Biomed. Mater. Res. Part A 2010, 94A, 499–508.

    CAS  Google Scholar 

  71. Guimarães, A.; Martins, A.; Pinho, E. D.; Faria, S.; Reis, R. L.; Neves, N. M. Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine 2010, 5, 539–554.

    Article  Google Scholar 

  72. Hwang, P. T. J.; Murdock, K.; Alexander, G. C.; Salaam, A. D.; Ng, J. I.; Lim, D. J.; Dean, D.; Jun, H. W. Poly(ε-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. J. Biomed. Mater. Res. Part A 2016, 104, 1017–1029.

    Article  CAS  Google Scholar 

  73. Pal, P.; Srivas, P. K.; Dadhich, P.; Das, B.; Maulik, D.; Dhara, S. Nano-/microfibrous cotton-wool-like 3D scaffold with core-shell architecture by emulsion electrospinning for skin tissue regeneration. ACS Biomater. Sci. Eng. 2017, 3, 3563–3575.

    Article  CAS  Google Scholar 

  74. Magrofuoco, E.; Flaibani, M.; Giomo, M.; Elvassore, N. Cell culture distribution in a three-dimensional porous scaffold in perfusion bioreactor. Biochem. Eng. J. 2019, 146, 10–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2022037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinrui Yang, Weitao Jia or Chen Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, L., Wang, L., Deng, J. et al. Enhanced cellular infiltration of tissue-engineered scaffolds fabricated by PLLA nanogrooved microfibers. Nano Res. 16, 1614–1625 (2023). https://doi.org/10.1007/s12274-022-4838-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4838-9

Keywords

Navigation