Skip to main content
Log in

Zinc-catecholete frameworks biomimetically grown on marine polysaccharide microfibers for soft electronic platform

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Integrating functional nanomaterials on nonplanar organisms has emerged as a rising technology, while significant mismatch would cause interface failure and poor durability. Herein, we demonstrate a facile strategy to assemble crystalline catecholate frameworks with honeycomb lattice on seaweed-derived polysaccharide microfibers, which is expected to form biomimetic connections and maintain durable stability. By physiological coagulation, well-aligned ZnO nanoarrays are tightly attached on alginate fibers, which is fractionally adopted as sacrifice for heteroepitaxial growth of zinc-catecholate frameworks (Zn3(HHTP)2). Benefiting from amplification effect of in-situ formed heterojunctions, promoted interfacial charge transfer is achieved, which allows for fabricating broadband photodetectors. Combined with high porosity for gas adsorption, the heteroepitaxial catecholate framework further enables its use as highly selective ppb-level triethylamine sensors. This work provides a promising strategy for heteroepitaxial growth of catecholate frameworks on organo-substrates and opens new applications in wearable sensor platform based on comfortable biofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, B.; Wen, H. M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Emerging multifunctional metal-organic framework materials. Adv. Mater. 2016, 28, 8819–8860.

    Article  CAS  Google Scholar 

  2. Lien, M. B.; Liu, C. H.; Chun, I. Y.; Ravishankar, S.; Nien, H.; Zhou, M. M.; Fessler, J. A.; Zhong, Z. H.; Norris, T. B. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 2020, 14, 143–148.

    Article  CAS  Google Scholar 

  3. Jin, S. How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett. 2019, 4, 1443–1445.

    Article  CAS  Google Scholar 

  4. Kitao, T.; Zhang, Y. Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2011, 46, 3108–3133.

    Article  Google Scholar 

  5. Day, R. W.; Bediako, D. K.; Rezaee, M.; Parent, L. R.; Skorupskii, G.; Arguilla, M. Q.; Hendon, C. H.; Stassen, I.; Gianneschi, N. C.; Kim, P. et al. Single crystals of electrically conductive two-dimensional metal-organic frameworks: Structural and electrical transport properties. ACS Cent. Sci. 2019, 5, 1959–1964.

    Article  CAS  Google Scholar 

  6. de Lourdes Gonzalez-Juarez, M.; Flores, E.; Martin-Gonzalez, M.; Nandhakumar, I.; Bradshaw, D. Electrochemical deposition and thermoelectric characterisation of a semiconducting 2-D metal-organic framework thin film. J. Mater. Chem. A 2020, 8, 13197–13206.

    Article  CAS  Google Scholar 

  7. Wang, W. W.; Xu, B. L.; Pan, X. T.; Zhang, J. F.; Liu, H. Y. Solvent-dependent adsorption-driven mechanism for MOFs-based yolk-shell nanostructures. Angew. Chem., Int. Ed. 2021, 60, 7802–7808.

    Article  CAS  Google Scholar 

  8. Du, X.; Zhang, J. N.; Wang, H. L.; Huang, Z. H.; Guo, A. K.; Zhao, L.; Niu, Y.; Li, X. L.; Wu, B.; Liu, Y. Q. Solid-solid interface growth of conductive metal-organic framework nanowire arrays and their supercapacitor application. Mater. Chem. Front. 2020, 4, 243–251.

    Article  CAS  Google Scholar 

  9. Hou, J. M.; Hong, X. L.; Zhou, S.; Wei, Y. Y.; Wang, H. H. Solvent-free route for metal-organic framework membranes growth aiming for efficient gas separation. AIChE J. 2019, 65, 712–722.

    Article  CAS  Google Scholar 

  10. Lee, D. T.; Zhao, J. J.; Oldham, C. J.; Peterson, G. W.; Parsons, G. N. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: Role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 2017, 9, 44847–44855.

    Article  CAS  Google Scholar 

  11. Sun, L.; Campbell, M. G.; Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566–3579.

    Article  CAS  Google Scholar 

  12. Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Conductive metal-organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Acta Phys. Chim. Sin. 2021, 37, 2010025.

    Google Scholar 

  13. Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically conductive metal-organic frameworks. Chem. Rev. 2020, 120, 8536–8580.

    Article  CAS  Google Scholar 

  14. Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K. H.; Deep, A. An overview of different strategies to introduce conductivity in metal-organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 2018, 6, 14992–15009.

    Article  CAS  Google Scholar 

  15. Johnson, E. M.; Ilic, S.; Morris, A. J. Design strategies for enhanced conductivity in metal-organic frameworks. ACS Cent. Sci. 2021, 7, 445–453.

    Article  CAS  Google Scholar 

  16. Mähringer, A.; Döblinger, M.; Hennemann, M.; Gruber, C.; Fehn, D.; Scheurle, P. I.; Hosseini, P.; Santourian, I.; Schirmacher, A.; Rotter, J. M. et al. An electrically conducting three-dimensional iron-catecholate porous framework. Angew. Chem., Int. Ed. 2021, 60, 18065–18072.

    Article  Google Scholar 

  17. Chen, S.; Dai, J.; Zeng, X. C. Metal-organic Kagome lattices M3(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)2 (M = Ni and Cu): From semiconducting to metallic by metal substitution. Phys. Chem. Chem. Phys. 2015, 17, 5954–5958.

    Article  CAS  Google Scholar 

  18. Yang, L. M.; He, X.; Dincă, M. Triphenylene-bridged trinuclear complexes of Cu: Models for spin interactions in two-dimensional electrically conductive metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 10475–10480.

    Article  CAS  Google Scholar 

  19. Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y. B.; Xu, G. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.

    Article  Google Scholar 

  20. Stavila, V.; Schneider, C.; Mowry, C.; Zeitler, T. R.; Greathouse, J. A.; Robinson, A. L.; Denning, J. M.; Volponi, J.; Leong, K.; Quan, W. et al. Thin film growth of nbo MOFs and their integration with electroacoustic devices. Adv. Funct. Mater. 2016, 26, 1699–1707.

    Article  CAS  Google Scholar 

  21. Liu, Y. X.; Wei, Y. N.; Liu, M. H.; Bai, Y. C.; Wang, X. Y.; Shang, S. C.; Du, C. S.; Gao, W. Q.; Chen, J. Y.; Liu, Y. Q. Face-to-face growth of wafer-scale 2D semiconducting mof films on dielectric substrates. Adv. Mater. 2021, 33, e2007741.

    Article  Google Scholar 

  22. Ma, Q. L.; Yin, P. F.; Zhao, M. T.; Luo, Z. Y.; Huang, Y.; He, Q. Y.; Yu, Y. F.; Liu, Z. Q.; Hu, Z. N.; Chen, B. et al. MOF-based hierarchical structures for solar-thermal clean water production. Adv. Mater. 2019, 31, e1808249.

    Article  Google Scholar 

  23. Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed. 2019, 58, 14915–14919.

    Article  CAS  Google Scholar 

  24. Yang, Q.; Liu, Y.; Pan, C. F.; Chen, J.; Wen, X. N.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 2013, 13, 607–613.

    Article  CAS  Google Scholar 

  25. Yilmaz, G.; Yam, K. M.; Zhang, C.; Fan, H. J.; Ho, G. W. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv. Mater. 2017, 29, 1606814.

    Article  Google Scholar 

  26. Wang, P. Z.; Liu, K.; Wang, X. X.; Meng, Z. T.; Xin, Z. F.; Cui, C. C.; Quan, F. Y.; Zhang, K. W.; Xia, Y. Z. Interface engineering of calligraphic ink mediated conformal polymer fibers for advanced flexible supercapacitors. J. Mater. Chem. A 2022, 10, 15776.

    Article  CAS  Google Scholar 

  27. Wan, F. Q.; Ping, H.; Wang, W. X.; Zou, Z. Y.; Xie, H.; Su, B. L.; Liu, D. B.; Fu, Z. Y. Hydroxyapatite-reinforced alginate fibers with bioinspired dually aligned architectures. Carbohydr. Polym. 2021, 267, 118167.

    Article  CAS  Google Scholar 

  28. Wang, P. Z.; Du, X. X.; Wang, X. J.; Zhang, K. W.; Sun, J. H.; Chen, Z.; Xia, Y. Z. Integrated fiber electrodes based on marine polysaccharide for ultrahigh-energy-density flexible supercapacitors. J. Power Sources 2021, 506, 230130.

    Article  CAS  Google Scholar 

  29. Hu, W. W.; Lin, Y. T. Alginate/polycaprolactone composite fibers as multifunctional wound dressings. Carbohydr. Polym. 2022, 289, 119440.

    Article  CAS  Google Scholar 

  30. Hoang, D. V.; Vu, N. H.; Do, N. T.; Pham, A. T. T.; Nguyen, T. H.; Kuo, J. L.; Phan, T. B.; Tran, V. C. Hydrogen roles approaching ideal electrical and optical properties for undoped and Al doped ZnO thin films. J. Materiomics 2022, 8, 123–135.

    Article  Google Scholar 

  31. Peng, Z.; Abbas, S. C.; Lv, J. Q.; Yang, R.; Wu, M. X.; Wang, Y. B. Mixed-metal organic framework-coated ZnO nanowires array for efficient photoelectrochemical water oxidation. Int. J. Hydrogen Energy 2019, 44, 2446.

    Article  CAS  Google Scholar 

  32. Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F. et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511–3513.

    Article  CAS  Google Scholar 

  33. Yao, M. S.; Lv, X. J.; Fu, Z. H.; Li, W. H.; Deng, W. H.; Wu, G. D.; Xu, G. Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem., Int. Ed. 2017, 56, 16510–16514.

    Article  CAS  Google Scholar 

  34. Bai, S. L.; Zhang, K. W.; Luo, R. X.; Li, D. Q.; Chen, A. F.; Liu, C. C. Sonochemical synthesis of hierarchically assembled tungsten oxides with excellent NO2-sensing properties. Mater. Lett. 2013, 111, 32–34.

    Article  CAS  Google Scholar 

  35. Rubio-Giménez, V.; Almora-Barrios, N.; Escorcia-Ariza, G.; Galbiati, M.; Sessolo, M.; Tatay, S.; Martí-Gastaldo, C. Origin of the chemiresistive response of ultrathin films of conductive metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 15086–15090.

    Article  Google Scholar 

  36. Du, X. X.; Tian, W. L.; Pan, J. H.; Hui, B.; Sun, J. H.; Zhang, K. W.; Xia, Y. Z. Piezo-phototronic effect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano Energy 2022, 92, 106694.

    Article  CAS  Google Scholar 

  37. Cao, L. A.; Yao, M. S.; Jiang, H. J.; Kitagawa, S.; Ye, X. L.; Li, W. H.; Xu, G. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 2020, 8, 9085–9090.

    Article  CAS  Google Scholar 

  38. Ko, M.; Mendecki, L.; Eagleton, A. M.; Durbin, C. G.; Stolz, R. M.; Meng, Z.; Mirica, K. A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717–11733.

    Article  CAS  Google Scholar 

  39. Wu, G.; Sun, S. Y.; Zhu, X. L.; Ma, Z. Y.; Zhang, Y. M.; Bao, N. Z. Microfluidic fabrication of hierarchical-ordered ZIF-L(Zn)@Ti3C2Tx core-sheath fibers for high-performance asymmetric supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202115559.

    CAS  Google Scholar 

  40. Jin, Z. W.; Wang, J. Z. PIN architecture for ultrasensitive organic thin film photoconductors. Sci. Rep. 2014, 4, 5331.

    Article  CAS  Google Scholar 

  41. Jo, Y. M.; Lim, K.; Yoon, J. W.; Jo, Y. K.; Moon, Y. K.; Jang, H. W.; Lee, J. H. Visible-light-activated type II heterojunction in Cu3(hexahydroxytriphenylene)2/Fe2O3 hybrids for reversible NO2 sensing: Critical role of π-π* transition. ACS Cent. Sci. 2021, 7, 1176–1182.

    Article  CAS  Google Scholar 

  42. Chuang, C. H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    Article  CAS  Google Scholar 

  43. Du, X. X.; Tian, W. L.; Zhang, Z. Q.; Hui, B.; Pan, J. H.; Sun, J. H.; Zhang, K. W. Defect promoted photothermoelectric effect in densely aligned ZnO nanorod arrays for self-powered position-sensitive photodetection. J. Materiomics 2022, 8, 693–701.

    Article  Google Scholar 

  44. Zhang, M. X.; Zhao, Z. H.; Hui, B.; Sun, J. H.; Sun, J. X.; Tian, W. L.; Zhang, Z. Q.; Zhang, K. W.; Xia, Y. Z. Carbonized polymer dots activated hierarchical tungsten oxide for efficient and stable triethylamine sensor. J. Hazard. Mater. 2021, 416, 126161.

    Article  CAS  Google Scholar 

  45. Bai, S. L.; Han, J. Y.; Han, N.; Zhang, K. W.; Sun, J. H.; Sun, L. X.; Luo, R. X.; Li, D. Q.; Chen, A. F. An α-Fe2O3/NiO p-n hierarchical heterojunction for the sensitive detection of triethylamine. Inorg. Chem. Front. 2020, 7, 1532–1539.

    Article  CAS  Google Scholar 

  46. Bai, S. L.; Zuo, Y.; Zhang, K. W.; Zhao, Y. Y.; Luo, R. X.; Li, D. Q.; Chen, A. F. WO3-ZnFe2O4 heterojunction and rGO decoration synergistically improve the sensing performance of triethylamine. Sens. Actuators B 2021, 347, 130619.

    Article  CAS  Google Scholar 

  47. Hu, Q.; He, J. Q.; Chang, J. Y.; Gao, J. M.; Huang, J. H.; Feng, L. Needle-shaped WO3 nanorods for triethylamine gas sensing. ACS Appl. Nano Mater. 2020, 3, 9046–9054.

    Article  CAS  Google Scholar 

  48. Li, Q. Q.; Han, N.; Zhang, K. W.; Bai, S. L.; Guo, J.; Luo, R. X.; Li, D. Q.; Chen, A. F. Novel p-n heterojunction of BiVO4/Cu2O decorated with rGO for low concentration of NO2 detection. Sens. Actuators B 2020, 320, 128284.

    Article  CAS  Google Scholar 

  49. Yuan, H. Y.; Li, N. X.; Fan, W. D.; Cai, H.; Zhao, D. Metal-organic framework based gas sensors. Adv. Sci. 2022, 9, 2104374.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51973099), Taishan Scholar Program of Shandong Province (Nos. tsqn201812055 and tspd20181208), and the State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (Nos. ZKT04 and GZRC202007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanzhi Xia or Kewei Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Zhang, M., Du, X. et al. Zinc-catecholete frameworks biomimetically grown on marine polysaccharide microfibers for soft electronic platform. Nano Res. 16, 1296–1303 (2023). https://doi.org/10.1007/s12274-022-4798-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4798-0

Keywords

Navigation