Skip to main content
Log in

Soft nanofiber modified micropatterned substrates enhance native-like endothelium maturation via CXCR4/calcium-mediated actin cytoskeleton assembly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Regeneration and maturation of native-like endothelium is crucial for material-guided small-diameter vascular regeneration. Although parallel-microgroove-patterned (micropatterned) substrates are capable of promoting endothelial regeneration with native-like endothelial cell (EC) alignment, their unbefitting high-stiffness acutely inhibits cell—matrix interaction and endothelial maturation. Given that the sufficient softness of nanofibers allows cells to deform the local matrix architecture to satisfy cell survival and functional requirements, in this study, an effective strategy of decorating micropatterned substrate with soft nanofibers was exploited to enhance cell—matrix interaction for engineering healthy endothelium. Results demonstrated that the micropatterned nanofibrous membranes were successfully obtained with high-resolution parallel microgrooves (groove width: ∼ 15 µm; groove depth: ∼ 5 µm) and adequate softness (bulk modulus: 2.27 ± 0.18 MPa). This particular substrate markedly accelerated the formation and maturation of confluent native-like endothelium by synchronously increasing cell—cell and cell—matrix interactions. Transcriptome analysis revealed that compared with smooth features, the microgrooved pattern was likely to promote endothelial remodeling via integrin α5-mediated microtubule disassembly and type I interleukin 1 receptor-mediated signaling pathways, whereas the nanofibrous pattern was likely to guide endothelial regeneration via integrin α5β8-guided actin cytoskeleton remodeling. Nevertheless, endowing micropatterned substrate with soft nanofibers was demonstrated to accelerate endothelial maturation via chemokine (C-X-C motif) receptor 4/calcium-mediated actin cytoskeleton assembly. Furthermore, numerical simulation results of hemodynamics indicated the positive impact of the micropatterned nanofibers on maintaining stable hemodynamics. Summarily, our current work supports an affirmation that the micropatterned nanofibrous substrates can significantly promote regeneration and maturation of native-like endothelium, which provides an innovative method for constructing vascular grafts with functional endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urbano, R. L.; Furia, C.; Basehore, S.; Clyne, A. M. Stiff substrates increase inflammation-induced endothelial monolayer tension and permeability. Biophys. J. 2017, 113, 645–655.

    Article  CAS  Google Scholar 

  2. Yi, B. C.; Shen, Y. B.; Tang, H.; Wang, X. L.; Zhang, Y. Z. Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomater. 2020, 108, 237–249.

    Article  CAS  Google Scholar 

  3. Bonito, V.; Koch, S. E.; Krebber, M. M.; Carvajal-Berrio, D. A.; Marzi, J.; Duijvelshoff, R.; Lurier, E. B.; Buscone, S.; Dekker, S.; De Jong, S. M. J. et al. Distinct effects of heparin and interleukin-4 functionalization on macrophage polarization and in situ arterial tissue regeneration using resorbable supramolecular vascular grafts in rats. Adv. Healthc. Mater. 2021, 10, 2101103.

    Article  CAS  Google Scholar 

  4. Gupta, P.; Mandal, B. B. Silk biomaterials for vascular tissue engineering applications. Acta Biomater. 2021, 134, 79–106.

    Article  CAS  Google Scholar 

  5. Koch, S. E.; De Kort, B. J.; Holshuijsen, N.; Brouwer, H. F. M.; Van Der Valk, D. C.; Dankers, P. Y. W.; Van Luijk, J. A. K. R.; Hooijmans, C. R.; De Vries, R. B. M.; Bouten, C. V. C. et al. Animal studies for the evaluation of in situ tissue-engineered vascular grafts—A systematic review, evidence map, and meta-analysis. Npj Regen. Med. 2022, 7, 17.

    Article  Google Scholar 

  6. Radke, D.; Jia, W. K.; Sharma, D.; Fena, K.; Wang, G. F.; Goldman, J.; Zhao, F. Tissue engineering at the blood-contacting surface: A review of challenges and strategies in vascular graft development. Adv. Healthc. Mater. 2018, 7, 1701461.

    Article  Google Scholar 

  7. Hao, D. K.; Fan, Y. H.; Xiao, W. W.; Liu, R. W.; Pivetti, C.; Walimbe, T.; Guo, F. Z.; Zhang, X. K.; Farmer, D. L.; Wang, F. S. et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater. 2020, 108, 178–193.

    Article  CAS  Google Scholar 

  8. Peng, B.; Tong, Z. Q.; Tong, W. Y.; Pasic, P. J.; Oddo, A.; Dai, Y. T.; Luo, M. H.; Frescene, J.; Welch, N. G.; Easton, C. D. et al. In situ surface modification of microfluidic blood-brain-barriers for improved screening of small molecules and nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 56753–56766.

    Article  CAS  Google Scholar 

  9. Zhuang, Y.; Zhang, C. L.; Cheng, M. J.; Huang, J. Y.; Liu, Q. C.; Yuan, G. Y.; Lin, K. L.; Yu, H. B. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact. Mater. 2021, 6, 1791–1809.

    Article  CAS  Google Scholar 

  10. Chang, H.; Hu, M.; Zhang, H.; Ren, K. F.; Li, B. C.; Li, H.; Wang, L. M.; Lei, W. X.; Ji, J. Improved endothelial function of endothelial cell monolayer on the soft polyelectrolyte multilayer film with matrix-bound vascular endothelial growth factor. ACS Appl. Mater. Interfaces 2016, 8, 14357–14366.

    Article  Google Scholar 

  11. Krishnan, R.; Klumpers, D. D.; Park, C. Y.; Rajendran, K.; Trepat, X.; Van Bezu, J.; Van Hinsbergh, V. W. M.; Carman, C. V.; Brain, J. D.; Fredberg, J. J. et al. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 2011, 300, C146–C154.

    Article  CAS  Google Scholar 

  12. Yi, B. C.; Yu, L.; Tang, H.; Wang, W. B.; Liu, W.; Zhang, Y. Z. Lysine-doped polydopamine coating enhances antithrombogenicity and endothelialization of an electrospun aligned fibrous vascular graft. Appl. Mater. Today 2021, 25, 101198.

    Article  Google Scholar 

  13. Ding, Y. H.; Yang, Z. L.; Bi, C. W. C.; Yang, M.; Xu, S. L.; Lu, X.; Huang, N.; Huang, P. B.; Leng, Y. Directing vascular cell selectivity and hemocompatibility on patterned platforms featuring variable topographic geometry and size. ACS Appl. Mater. Interfaces 2014, 6, 12062–12070.

    Article  CAS  Google Scholar 

  14. Govindarajan, T.; Shandas, R. Microgrooves encourage endothelial cell adhesion and organization on shape-memory polymer surfaces. ACS Appl. Bio Mater. 2019, 2, 1897–1906.

    Article  CAS  Google Scholar 

  15. Chen, J. Y.; Hu, M.; Zhang, H.; Li, B. C.; Chang, H.; Ren, K. F.; Wang, Y. B.; Ji, J. Improved antithrombotic function of oriented endothelial cell monolayer on microgrooves. ACS Biomater. Sci. Eng. 2018, 4, 1976–1985.

    Article  CAS  Google Scholar 

  16. Sales, A.; Holle, A. W.; Kemkemer, R. Initial contact guidance during cell spreading is contractility-independent. Soft Matter 2017, 13, 5158–5167.

    Article  CAS  Google Scholar 

  17. Yi, B. C.; Xu, Q.; Liu, W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact. Mater. 2022, 15, 82–102.

    Article  CAS  Google Scholar 

  18. Davis, G. E.; Senger, D. R. Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 2005, 97, 1093–1107.

    Article  CAS  Google Scholar 

  19. Taskin, M. B.; Ahmad, T.; Wistlich, L.; Meinel, L.; Schmitz, M.; Rossi, A.; Groll, J. Bioactive electrospun fibers: Fabrication strategies and a critical review of surface-sensitive characterization and quantification. Chem. Rev. 2021, 121, 11194–11237.

    Article  CAS  Google Scholar 

  20. Weekes, A.; Bartnikowski, N.; Pinto, N.; Jenkins, J.; Meinert, C.; Klein, T. J. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater. 2022, 138, 92–111.

    Article  CAS  Google Scholar 

  21. Sun, Q.; Hou, Y.; Chu, Z. Q.; Wei, Q. Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioact. Mater. 2022, 10, 397–404.

    Article  CAS  Google Scholar 

  22. Baker, B. M.; Trappmann, B.; Wang, W. Y.; Sakar, M. S.; Kim, I. L.; Shenoy, V. B.; Burdick, J. A.; Chen, C. S. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 2015, 14, 1262–1268.

    Article  CAS  Google Scholar 

  23. Shin, Y. M.; Shin, H. J.; Heo, Y.; Jun, I.; Chung, Y. W.; Kim, K.; Lim, Y. M.; Jeon, H.; Shin, H. Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation. J. Mater. Chem. B 2017, 5, 318–328.

    Article  CAS  Google Scholar 

  24. Tang, H.; Yi, B. C.; Wang, X. L.; Shen, Y. B.; Zhang, Y. Z. Understanding the cellular responses based on low-density electrospun fiber networks. Mat. Sci. Eng. C 2021, 119, 111470.

    Article  CAS  Google Scholar 

  25. Berginski, M. E.; Gomez, S. M. The focal adhesion analysis server: A web tool for analyzing focal adhesion dynamics. F1000Res 2013, 2, 68.

    Article  Google Scholar 

  26. Zhu, M. F.; Wu, Y. F.; Li, W.; Dong, X. H.; Chang, H.; Wang, K.; Wu, P. L.; Zhang, J.; Fan, G. W.; Wang, L. Y. et al. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials 2018, 183, 306–318.

    Article  CAS  Google Scholar 

  27. Sell, S. A.; McClure, M. J.; Garg, K.; Wolfe, P. S.; Bowlin, G. L. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliver. Rev. 2009, 61, 1007–1019.

    Article  CAS  Google Scholar 

  28. Meshel, A. S.; Wei, Q. Z.; Adelstein, R. S.; Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell Biol. 2005, 7, 157–164.

    Article  CAS  Google Scholar 

  29. Hansel, C. S.; Crowder, S. W.; Cooper, S.; Gopal, S.; Da Cruz, M. J. P.; Martins, L. D. O.; Keller, D.; Rothery, S.; Becce, M.; Cass, A. E. G. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 2019, 13, 2913–2926.

    Article  CAS  Google Scholar 

  30. Soenen, S. J. H.; Nuytten, N.; De Meyer, S. F.; De Smedt, S. C.; De Cuyper, M. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 2010, 6, 832–842.

    Article  CAS  Google Scholar 

  31. Mascharak, S.; Benitez, P. L.; Proctor, A. C.; Madl, C. M.; Hu, K. H.; Dewi, R. E.; Butte, M. J.; Heilshorn, S. C. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography. Biomaterials 2017, 115, 155–166.

    Article  CAS  Google Scholar 

  32. Jiang, W. S.; Zhang, C. X.; Tran, L.; Wang, S. G.; Hakim, A. D.; Liu, H. N. Engineering nano-to-micron-patterned polymer coatings on bioresorbable magnesium for controlling human endothelial cell adhesion and morphology. ACS Biomater. Sci. Eng. 2020, 6, 3878–3898.

    Article  CAS  Google Scholar 

  33. Eguiluz, R. C. A.; Kaylan, K. B.; Underhill, G. H.; Leckband, D. E. Substrate stiffness and VE-cadherin mechano-transduction coordinate to regulate endothelial monolayer integrity. Biomaterials 2017, 140, 45–57.

    Article  Google Scholar 

  34. Wu, X. F.; Zhao, X. H.; Baylor, L.; Kaushal, S.; Eisenberg, E.; Greene, L. E. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol. 2001, 155, 291–300.

    Article  CAS  Google Scholar 

  35. Qiao, D. H.; Yang, X. H.; Meyer, K.; Friedl, A. Glypican-1 regulates anaphase promoting complex/cyclosome substrates and cell cycle progression in endothelial cells. Mol. Biol. Cell 2008, 19, 2789–2801.

    Article  CAS  Google Scholar 

  36. Cancel, L. M.; Tarbell, J. M. The role of mitosis in LDL transport through cultured endothelial cell monolayers. Am. J. Physiol. Circulat. Physiol. 2011, 300, H769–H776.

    Article  CAS  Google Scholar 

  37. Ohashi, T.; Sato, M. Remodeling of vascular endothelial cells exposed to fluid shear stress: Experimental and numerical approach. Fluid Dyn. Res. 2005, 37, 40–59.

    Article  Google Scholar 

  38. Tzima, E.; Del Pozo, M. A.; Kiosses, W. B.; Mohamed, S. A.; Li, S.; Chien, S.; Schwartz, M. A. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 2002, 21, 6791–6800.

    Article  CAS  Google Scholar 

  39. Ng, D. H. J.; Humphries, J. D.; Byron, A.; Millon-Frémillon, A.; Humphries, M. J. Microtubule-dependent modulation of adhesion complex composition. PLoS One 2014, 9, e115213.

    Article  Google Scholar 

  40. Tedgui, A.; Mallat, Z. Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 2001, 88, 877–887.

    Article  CAS  Google Scholar 

  41. Ciechanover, A.; Orian, A.; Schwartz, A. L. Ubiquitin-mediated proteolysis: Biological regulation via destruction. Bioessays 2000, 22, 442–451.

    Article  CAS  Google Scholar 

  42. Liu, L. J.; Michowski, W.; Kolodziejczyk, A.; Sicinski, P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 2019, 21, 1060–1067.

    Article  CAS  Google Scholar 

  43. Zachariae, W.; Tyson, J. J. Cell division: Flipping the mitotic switches. Curr. Biol. 2016, 26, R1272–R1274.

    Article  CAS  Google Scholar 

  44. Papakonstanti, E. A.; Vardaki, E. A.; Stournaras, C. Actin cytoskeleton: A signaling sensor in cell volume regulation. Cell Physiol. Biochem. 2000, 10, 257–264.

    Article  CAS  Google Scholar 

  45. Schnittler, H. J.; Schneider, S. W.; Raifer, H.; Luo, F.; Dieterich, P.; Just, I.; Aktories, K. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pfluger Arch. 2001, 442, 675–687.

    Article  CAS  Google Scholar 

  46. Cunningham, K. S.; Gotlieb, A. I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest. 2005, 85, 9–23.

    Article  CAS  Google Scholar 

  47. Shen, Q.; Rigor, R. R.; Pivetti, C. D.; Wu, M. H.; Yuan, S. Y. Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc. Res. 2010, 87, 272–280.

    Article  CAS  Google Scholar 

  48. Tinsley, J. H.; De Lanerolle, P.; Wilson, E.; Ma, W. Y.; Yuan, S. Y. Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am. J. Physiol. Cell Physiol. 2000, 279, C1285–C1289.

    Article  CAS  Google Scholar 

  49. Lau, E. O. C.; Damiani, D.; Chehade, G.; Ruiz-Reig, N.; Saade, R.; Jossin, Y.; Aittaleb, M.; Schakman, O.; Tajeddine, N.; Gailly, P. et al. DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. eLife 2021, 10, e61974.

    Article  CAS  Google Scholar 

  50. Gasiorowski, J. Z.; Liliensiek, S. J.; Russell, P.; Stephan, D. A.; Nealey, P. F.; Murphy, C. J. Alterations in gene expression of human vascular endothelial cells associated with nanotopographic cues. Biomaterials 2010, 31, 8882–8888.

    Article  CAS  Google Scholar 

  51. Vakifahmetoglu-Norberg, H.; Ouchida, A. T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 2017, 482, 426–431.

    Article  CAS  Google Scholar 

  52. Rao, R. M.; Yang, L.; Garcia-Cardena, G.; Luscinskas, F. W. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ. Res. 2007, 101, 234–247.

    Article  CAS  Google Scholar 

  53. Muller, W. A. Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003, 24, 326–333.

    Article  Google Scholar 

  54. Adams, R. H.; Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect. Biol. 2010, 2, a001875.

    Article  Google Scholar 

  55. Kay, A. M.; Simpson, C. L.; Stewart, J. A.; Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J. Diabetes Res. 2016, 2016, 6809703.

    Article  Google Scholar 

  56. Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T. J.; Ridger, V.; Roddie, H.; Evans, P. C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63.

    Article  Google Scholar 

  57. Bryant, J.; Ahern, D. J.; Brennan, F. M. CXCR4 and vascular cell adhesion molecule 1 are key chemokine/adhesion receptors in the migration of cytokine-activated T cells. Arthritis Rheum. 2012, 64, 2137–2146.

    Article  CAS  Google Scholar 

  58. Putney, J. W.; Tomita, T. Phospholipase C signaling and calcium influx. Adv. Biol. Regul. 2012, 52, 152–164.

    Article  CAS  Google Scholar 

  59. Thelen, M.; Stein, J. V. How chemokines invite leukocytes to dance. Nat. Immunol. 2008, 9, 953–959.

    Article  CAS  Google Scholar 

  60. Béliveau, É.; Guillemette, G. Microfilament and microtubule assembly is required for the propagation of inositol trisphosphate receptor-induced Ca2+ waves in bovine aortic endothelial cells. J. Cell Biochem. 2009, 106, 344–352.

    Article  Google Scholar 

  61. Wang, Z. H.; Liu, C. G.; Xiao, Y.; Gu, X.; Xu, Y.; Dong, N. G.; Zhang, S. M.; Qin, Q. H.; Wang, J. L. Remodeling of a cell-free vascular graft with nanolamellar intima into a neovessel. ACS Nano 2019, 13, 10576–10586.

    Article  CAS  Google Scholar 

  62. Liu, M.; Sun, A. Q.; Deng, X. Y. Numerical and experimental investigation of the hemodynamic performance of bifurcated stent grafts with various torsion angles. Sci. Rep. 2018, 8, 12625.

    Article  Google Scholar 

  63. Wang, Z. H.; Liu, C. G.; Zhu, D.; Gu, X.; Xu, Y.; Qin, Q. H.; Dong, N. G.; Zhang, S. M.; Wang, J. L. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling. Biomaterials 2020, 231, 119654.

    Article  CAS  Google Scholar 

  64. Song, K. H.; Kwon, K. W.; Song, S.; Suh, K. Y.; Doh, J. Dynamics of T cells on endothelial layers aligned by nanostructured surfaces. Biomaterials 2012, 33, 2007–2015.

    Article  CAS  Google Scholar 

  65. Wen, J. H.; Vincent, L. G.; Fuhrmann, A.; Choi, Y. S.; Hribar, K. C.; Taylor-Weiner, H.; Chen, S. C.; Engler, A. J. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 2014, 13, 979–987.

    Article  CAS  Google Scholar 

  66. Kennedy, K. M.; Bhaw-Luximon, A.; Jhurry, D. Cell—matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater. 2017, 50, 41–55.

    Article  CAS  Google Scholar 

  67. Liliensiek, S. J.; Wood, J. A.; Yong, J.; Auerbach, R.; Nealey, P. F.; Murphy, C. J. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 2010, 31, 5418–5426.

    Article  CAS  Google Scholar 

  68. Fu, Y.; Xiao, S. H.; Hong, T. T.; Shaw, R. M. Cytoskeleton regulation of ion channels. Circulation 2015, 131, 689–691.

    Article  Google Scholar 

  69. Jain, A.; Graveline, A.; Waterhouse, A.; Vernet, A.; Flaumenhaft, R.; Ingber, D. E. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat. Commun. 2016, 7, 10176.

    Article  CAS  Google Scholar 

  70. Baeyens, N.; Schwartz, M. A. Biomechanics of vascular mechanosensation and remodeling. Mol. Biol. Cell 2016, 27, 7–11.

    Article  CAS  Google Scholar 

  71. Gerhold, K. A.; Schwartz, M. A. Ion channels in endothelial responses to fluid shear stress. Physiology (Bethesda) 2016, 31, 359–369.

    CAS  Google Scholar 

  72. Ali Shahzad, K.; Qin, Z. J.; Li, Y.; Xia, D. L. The roles of focal adhesion and cytoskeleton systems in fluid shear stress-induced endothelial cell response. Biocell 2020, 44, 137–145.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2018YFC1105800), China Postdoctoral Science Foundation (No. 2020M681322), and National Natural Science Foundation of China (No. 31870967). We are also grateful to Shiyanjia Lab (https://www.shiyanjia.com) for his kind help in performing the numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Electronic Supplementary Material

12274_2022_4670_MOESM1_ESM.pdf

Soft nanofiber modified micropatterned substrates enhance native-like endothelium maturation via CXCR4/calcium-mediated actin cytoskeleton assembly

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, B., Zhou, B., Dai, W. et al. Soft nanofiber modified micropatterned substrates enhance native-like endothelium maturation via CXCR4/calcium-mediated actin cytoskeleton assembly. Nano Res. 16, 792–809 (2023). https://doi.org/10.1007/s12274-022-4670-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4670-2

Keywords

Navigation