Skip to main content
Log in

Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To produce metal-organic framework (MOF) catalysts with both high activity and durability is interesting but challenging. We report an amorphous MOF (NH2-MIL-68), which combines the advantages of (1) a large number of open metal sites, (2) the basic building blocks and connectivity of crystalline NH2-MIL-68, and (3) hierarchically meso- and microporous structure. It exhibits high performances in electrocatalytic reduction of CO2 and photochemical cycloaddition of CO2 under mild conditions. For the former reaction, the maximum Faradaic efficiency for product formic acid (FEHCOOH) reaches 93.3% with a current density of 34.2 mA·cm−2 at −2.05 V vs. Ag/Ag+ catalyzed by amorphous NH2-MIL-68, while the crystalline NH2-MIL-68 shows FEHCOOH of 67.7% with considerable productions of CO and H2 at the same experimental conditions. For the photochemical cycloaddition of CO2 with styrene oxide, the yield by amorphous NH2-MIL-68 can reach 94.1% at 12 h, which is higher than the reported value under similar conditions. The structure—efficiency relationship of the catalyst for the two reactions was investigated. This work opens up new possibility for designing high-performance MOF and MOF-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng, L.; Wang, K. Y.; Lv, X. L.; Yan, T. H.; Li, J. R.; Zhou, H. C. Modular total synthesis in reticular chemistry. J. Am. Chem. Soc. 2020, 142, 3069–3076.

    Article  CAS  Google Scholar 

  2. Hao, L. D.; Xia, Q. N.; Zhang, Q.; Masa, J.; Sun, Z. Y. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chin. J. Catal. 2021, 42, 1903–1920.

    Article  CAS  Google Scholar 

  3. Ji, P. F.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J. H.; Lin, W. B. Tuning Lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc. 2018, 140, 10553–10561.

    Article  CAS  Google Scholar 

  4. Lo, S. H.; Feng, L.; Tan, K.; Huang, Z. H.; Yuan, S.; Wang, K. Y.; Li, B. H.; Liu, W. L.; Day, G. S.; Tao, S. S. et al. Rapid desolvation-triggered domino lattice rearrangement in a metal-organic framework. Nat. Chem. 2020, 12, 90–97.

    Article  Google Scholar 

  5. Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.

    Article  CAS  Google Scholar 

  6. Wu, H. B.; Lou, X. W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, eaap9252.

    Article  Google Scholar 

  7. Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

    Article  CAS  Google Scholar 

  8. Zhang, F. Y.; Zhang, J. L.; Zhang, B. X.; Zheng, L. R.; Cheng, X. Y.; Wan, Q.; Han, B. X.; Zhang, J. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nat. Commun. 2020, 11, 1431.

    Article  CAS  Google Scholar 

  9. Sang, X. X.; Zhang, J. L.; Xiang, J. F.; Cui, J.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Li, Z. H.; Mo, G.; Xu, Y. et al. Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. Nat. Commun. 2017, 8, 175.

    Article  Google Scholar 

  10. Peng, L.; Zhang, J. L.; Xue, Z. M.; Han, B. X.; Sang, X. X.; Liu, C. C.; Yang, G. Y. Highly mesoporous metal-organic framework assembled in a switchable solvent. Nat. Commun. 2014, 5, 4465.

    Article  CAS  Google Scholar 

  11. Liu, L. M.; Chen, Z. J.; Wang, J. J.; Zhang, D. L.; Zhu, Y. H.; Ling, S. L.; Huang, K. W.; Belmabkhout, Y.; Adil, K.; Zhang, Y. X. et al. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution. Nat. Chem. 2019, 11, 622–628.

    Article  CAS  Google Scholar 

  12. Feng, L.; Yuan, S.; Zhang, L. L.; Tan, K.; Li, J. L.; Kirchon, A.; Liu, L. M.; Zhang, P.; Han, Y.; Chabal, Y. J. et al. Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 2363–2372.

    Article  CAS  Google Scholar 

  13. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    Article  CAS  Google Scholar 

  14. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

    Article  CAS  Google Scholar 

  15. Li, B. W.; Zeng, H. C. Synthetic chemistry and multifunctionality of an amorphous Ni-MOF-74 shell on a Ni/SiO2 hollow catalyst for efficient tandem reactions. Chem. Mater. 2019, 31, 5320–5330.

    Article  CAS  Google Scholar 

  16. Stolar, T.; Prašnikar, A.; Martinez, V.; Karadeniz, B.; Bjelić, A.; Mali, G.; Friščić, T.; Likozar, B.; Užarević, K. Scalable mechanochemical amorphization of bimetallic Cu-Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Appl. Mater. Interfaces 2021, 13, 3070–3077.

    Article  CAS  Google Scholar 

  17. Li, Y.; Gao, Z. G.; Bao, H. M.; Zhang, B. H.; Wu, C.; Huang, C. F.; Zhang, Z. L.; Xie, Y. Y.; Wang, H. Amorphous nickel-cobalt bimetal-organic framework nanosheets with crystalline motifs enable efficient oxygen evolution reaction: Ligands hybridization engineering. J. Energy Chem. 2021, 53, 251–259.

    Article  CAS  Google Scholar 

  18. Liu, C.; Wang, J.; Wan, J. J.; Cheng, Y.; Huang, R.; Zhang, C. Q.; Hu, W. L.; Wei, G. F.; Yu, C. Z. Amorphous metal-organic framework-dominated nanocomposites with both compositional and structural heterogeneity for oxygen evolution. Angew. Chem., Int. Ed. 2020, 59, 3630–3637.

    Article  CAS  Google Scholar 

  19. Zhang, X. D.; Li, H. X.; Lv, X. T.; Xu, J. C.; Wang, Y. X.; He, C.; Liu, N.; Yang, Y. Q.; Wang, Y. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: Formation mechanism and structure changes during application in CO oxidation. Chem.—Eur. J. 2018, 24, 8822–8832.

    Article  CAS  Google Scholar 

  20. Bennett, T. D.; Cheetham, A. K. Amorphous metal-organic frameworks. Acc. Chem. Res. 2014, 47, 1555–1562.

    Article  CAS  Google Scholar 

  21. Graham, A. J.; Banu, A. M.; Düren, T.; Greenaway, A.; McKellar, S. C.; Mowat, J. P. S.; Ward, K.; Wright, P. A.; Moggach, S. A. Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure. J. Am. Chem. Soc. 2014, 136, 8606–8613.

    Article  CAS  Google Scholar 

  22. Conrad, S.; Kumar, P.; Xue, F.; Ren, L. M.; Henning, S.; Xiao, C. H.; Mkhoyan, K. A.; Tsapatsis, M. Controlling dissolution and transformation of zeolitic imidazolate frameworks by using electron-beam-induced amorphization. Angew. Chem., Int. Ed. 2018, 57, 13592–13597.

    Article  CAS  Google Scholar 

  23. Bennett, T. D.; Keen, D. A.; Tan, J. C.; Barney, E. R.; Goodwin, A. L.; Cheetham, A. K. Thermal amorphization of zeolitic imidazolate frameworks. Angew. Chem., Int. Ed. 2011, 50, 3067–3071.

    Article  CAS  Google Scholar 

  24. Lee, H. J.; We, J.; Kim, J. O.; Kim, D.; Cha, W.; Lee, E.; Sohn, J.; Oh, M. Morphological and structural evolutions of metal-organic framework particles from amorphous spheres to crystalline hexagonal rods. Angew. Chem., Int. Ed. 2015, 54, 10564–10568.

    Article  CAS  Google Scholar 

  25. Iacomi, P.; Formalik, F.; Marreiros, J.; Shang, J.; Rogacka, J.; Mohmeyer, A.; Behrens, P.; Ameloot, R.; Kuchta, B.; Llewellyn, P. L. Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801). Chem. Mater. 2019, 31, 8413–8423.

    Article  CAS  Google Scholar 

  26. Bennett, T. D.; Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 431–440.

    Article  Google Scholar 

  27. Peng, Y. W.; Zhao, M. T.; Chen, B.; Zhang, Z. C.; Huang, Y.; Dai, F. N.; Lai, Z. C.; Cui, X. Y.; Tan, C. L.; Zhang, H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core—shell hybrid materials. Adv. Mater. 2017, 1705454.

  28. Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Z.; Li, Y. W.; Xiao, J. Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Res. 2017, 10, 3543–3556.

    Article  CAS  Google Scholar 

  29. Hu, B. B.; Hu, M. C.; Guo, Q.; Wang, K.; Wang, X. T. In-vacancy engineered plate-like In(OH)3 for effective photocatalytic reduction of CO2 with H2O vapor. Appl. Catal. B 2019, 253, 77–87.

    Article  CAS  Google Scholar 

  30. Ameloot, R.; Vermoortele, F.; Hofkens, J.; De Schryver, F. C.; De Vos, D. E.; Roeffaers, M. B. J. Three-dimensional visualization of defects formed during the synthesis of metal-organic frameworks: A fluorescence microscopy study. Angew. Chem., Int. Ed. 2013, 52, 401–405.

    Article  CAS  Google Scholar 

  31. Zhang, B. X.; Zhang, J. L.; Tan, X. N.; Shao, D.; Shi, J. B.; Zheng, L. R.; Zhang, J.; Yang, G. Y.; Han, B. X. MIL-125-NH2@TiO2 core—shell particles produced by a post-solvothermal route for highperformance photocatalytic H2 production. ACS Appl. Mater. Interfaces 2018, 10, 16418–16423.

    Article  CAS  Google Scholar 

  32. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  Google Scholar 

  33. Ren, W. H.; Tan, X.; Qu, J. T.; Li, S. S.; Li, J. T.; Liu, X.; Ringer, S. P.; Cairney, J. M.; Wang, K. X.; Smith, S. et al. Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.

    Article  CAS  Google Scholar 

  34. Zhao, Y.; Tan, X.; Yang, W. F.; Jia, C.; Chen, X. J.; Ren, W. H.; Smith, S. C.; Zhao, C. Surface reconstruction of ultrathin palladium nanosheets during electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 21493–21498.

    Article  CAS  Google Scholar 

  35. Zhang, B. X.; Zhang, J. L.; Hua, M. L.; Wan, Q.; Su, Z. Z.; Tan, X. N.; Liu, L. F.; Zhang, F. Y.; Chen, G.; Tan, D. X. et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 2020, 142, 13606–13613.

    Article  CAS  Google Scholar 

  36. Zhang, B. X.; Zhang, J. L.; Zhang, F. Y.; Zheng, L. R.; Mo, G.; Han, B. X.; Yang, G. Y. Selenium-doped hierarchically porous carbon nanosheets as an efficient metal-free electrocatalyst for CO2 reduction. Adv. Funct. Mater. 2020, 30, 1906194.

    Article  CAS  Google Scholar 

  37. Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

    Article  Google Scholar 

  38. Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem., Int. Ed. 2020, 59, 15014–15020.

    Article  CAS  Google Scholar 

  39. Zheng, T. T.; Liu, C. X.; Guo, C. X.; Zhang, M. L.; Li, X.; Jiang, Q.; Xue, W. Q.; Li, H. L.; Li, A. W.; Pao, C. W. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386–1393.

    Article  CAS  Google Scholar 

  40. Chi, L. P.; Niu, Z. Z.; Zhang, X. L.; Yang, P. P.; Liao, J.; Gao, F. Y.; Wu, Z. Z.; Tang, K. B.; Gao, M. R. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat. Commun. 2021, 12, 5835.

    Article  CAS  Google Scholar 

  41. Kang, X. C.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W. et al. Quantitative electro-reduction of CO2 to liquid fuel over electro-synthesized metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 17384–17392.

    Article  CAS  Google Scholar 

  42. Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.

    Article  CAS  Google Scholar 

  43. Chatelet, B.; Joucla, L.; Dutasta, J. P.; Martinez, A.; Szeto, K. C.; Dufaud, V. Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO2 and epoxides. J. Am. Chem. Soc. 2013, 135, 5348–5351.

    Article  CAS  Google Scholar 

  44. Yuan, Y.; Li, J. T.; Sun, X. D.; Li, G. H.; Liu, Y. L.; Verma, G.; Ma, S. Q. Indium-organic frameworks based on dual secondary building units featuring halogen-decorated channels for highly effective CO2 fixation. Chem. Mater. 2019, 31, 1084–1091.

    Article  CAS  Google Scholar 

  45. Huang, Z. W.; Hu, K. Q.; Mei, L.; Wang, C. Z.; Chen, Y. M.; Wu, W. S.; Chai, Z. F.; Shi, W. Q. Potassium ions induced framework interpenetration for enhancing the stability of uranium-based porphyrin MOF with visible-light-driven photocatalytic activity. Inorg. Chem. 2021, 60, 651–659.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was made possible as a result of a generous grant from Ministry of Science and Technology of China (No. 2017YFA0403003) and the National Natural Science Foundation of China (No. 22033009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianling Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, J., Cheng, X. et al. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Res. 16, 181–188 (2023). https://doi.org/10.1007/s12274-022-4664-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4664-0

Keywords

Navigation