Skip to main content
Log in

Polypeptide analysis for nanopore-based protein identification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Presently, proteins are identified by cleaving them with proteases, measuring the mass to charge ratio of the fragments with a mass spectrometer, and matching the fragments to segments within known proteins in databases. We earlier demonstrated that a nanometer-scale pore formed by aerolysin (AeL) can discriminate between, and therefore identify, three similar size proteins from their trypsin-cleaved polypeptide fragments. With this nanopore-protease method, the protein’s identity is instead determined from characteristic ionic current blockade patterns caused by the polypeptide fragments that enter the nanopore. The results also suggested that not all of the theoretically expected cleavage products partition into the pore. To better understand the mechanism by which polypeptide fragments are captured, and how different polypeptides reduce the pore’s ionic current, we studied the effects of 11 identical length polypeptides with different net charges and charge distributions. We show that under certain experimental conditions, negative, positive, and neutral polypeptides are driven into the AeL pore by the same applied voltage polarity. The capture rate and dwell time of polypeptides in the pore depend strongly on the ionic strength, the magnitude of the applied voltage, and the net charge and charge distribution of the polypeptides. The dwell time distribution depends non-monotonically on the applied voltage (regardless of the polymer’s net charge), and its maximum value depends on the polypeptide net charge and charge distribution. The maximum dwell time for different polypeptides does not occur at the same applied voltage amplitude, which conceivably might complicate the detection and discrimination of some polypeptide fragments. Although additional experiments, computer simulations, and artificial intelligence research are needed to better understand how to optimize the partitioning of enzymatically cleaved fragments into the AeL nanopore, the method is still capable of accurately identifying proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edman, P. A method for the determination of amino acid sequence in peptides. Arch. Biochem. 1949, 22, 475.

    CAS  Google Scholar 

  2. Sanger, F.; Nicklen, S.; Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467.

    Article  CAS  Google Scholar 

  3. Ansorge, W. J. Next-generation DNA sequencing techniques. New Biotechnol. 2009, 25, 195–203.

    Article  CAS  Google Scholar 

  4. Kasianowicz, J. J.; Bezrukov, S. M. Protonation dynamics of the α-toxin ion channel from spectral analysis of PH-dependent current fluctuations. Biophys. J. 1995, 69, 94–105.

    Article  CAS  Google Scholar 

  5. Bezrukov, S. M.; Vodyanoy, I.; Brutyan, R. A.; Kasianowicz, J. J. Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 1996, 29, 8517–8522.

    Article  CAS  Google Scholar 

  6. Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773.

    Article  CAS  Google Scholar 

  7. Kasianowicz, J. J.; Robertson, J. W. F.; Chan, E. R.; Reiner, J. E.; Stanford, V. M. Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 2008, 1, 737–766.

    Article  CAS  Google Scholar 

  8. Howorka, S.; Siwy, Z. Nanopore analytics: Sensing of single molecules. Chem. Soc. Rev. 2009, 38, 2360–2384.

    Article  CAS  Google Scholar 

  9. Reiner, J. E.; Balijepalli, A.; Robertson, J. W. F.; Campbell, J.; Suehle, J.; Kasianowicz, J. J. Disease detection and management via single nanopore-based sensors. Chem. Rev. 2012, 112, 6431–6451.

    Article  CAS  Google Scholar 

  10. Schibel, A. E. P.; An, N.; Jin, Q.; Fleming, A. M.; Burrows, C. J.; White, H. S. Nanopore detection of 8-oxo-7, 8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J. Am. Chem. Soc. 2010, 132, 17992–17995.

    Article  CAS  Google Scholar 

  11. Oukhaled, G.; Mathé, J.; Biance, A. L.; Bacri, L.; Betton, J. M.; Lairez, D.; Pelta, J.; Auvray, L. Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 2009, 98, 158101.

    Article  CAS  Google Scholar 

  12. Oukhaled, A.; Cressiot, B.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J. M.; Bourhis, E.; Jede, R.; Gierak, J.; Auvray, L.; Pelta, J. Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 2011, 5, 3628–3638.

    Article  CAS  Google Scholar 

  13. Reiner, J. E.; Kasianowicz, J. J.; Nablo, B. J.; Robertson, J. W. F. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc. Natl. Acad. Sci. USA 2010, 107, 12080–12085.

    Article  Google Scholar 

  14. Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. USA 2010, 107, 16060–16065.

    Article  Google Scholar 

  15. Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 2012, 30, 349–353.

    Article  CAS  Google Scholar 

  16. Robertson, J. W. F.; Rodrigues, C. G.; Stanford, V. M.; Rubinson, K. A.; Krasilnikov, O. V.; Kasianowicz, J. J. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc. Natl. Acad. Sci. USA 2007, 104, 8207–8211.

    Article  CAS  Google Scholar 

  17. Kumar, S.; Tao, C. J.; Chien, M.; Hellner, B.; Balijepalli, A.; Robertson, J. W. F.; Li, Z. M.; Russo, J. J.; Reiner, J. E.; Kasianowicz, J. J. et al. PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci. Rep. 2012, 2, 684.

    Article  CAS  Google Scholar 

  18. Fuller, C. W.; Kumar, S.; Porel, M.; Chien, M.; Bibillo, A.; Stranges, P. B.; Dorwart, M.; Tao, C. J.; Li, Z. M.; Guo, W. J. et al. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proc. Natl. Acad. Sci. USA 2016, 113, 5233–5238.

    Article  CAS  Google Scholar 

  19. Movileanu, L.; Howorka, S.; Braha, O.; Bayley, H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat. Biotechnol. 2000, 18, 1091–1095.

    Article  CAS  Google Scholar 

  20. Kasianowicz, J. J.; Henrickson, S. E.; Weetall, H. H.; Robertson, B. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 2001, 73, 2268–2272.

    Article  CAS  Google Scholar 

  21. Sutherland, T. C.; Long, Y. T.; Stefureac, R. I.; Bediako-Amoa, I.; Kraatz, H. B.; Lee, J. S. Structure of peptides investigated by nanopore analysis. Nano Lett. 2004, 4, 1273–1277.

    Article  CAS  Google Scholar 

  22. Movileanu, L.; Schmittschmitt, J. P.; Scholtz, J. M.; Bayley, H. Interactions of peptides with a protein pore. Biophys. J. 2005, 89, 1030–1045.

    Article  CAS  Google Scholar 

  23. Stefureac, R.; Long, Y. T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Transport of α-helical peptides through α-hemolysin and aerolysin pores. Biochemistry 2006, 45, 9172–9179.

    Article  CAS  Google Scholar 

  24. Wolfe, A. J.; Mohammad; Cheley, S.; Bayley, H.; Movileanu, L. Catalyzing the translocation of polypeptides through attractive interactions. J. Am. Chem. Soc. 2007, 129, 14034–14041.

    Article  CAS  Google Scholar 

  25. Zhao, Q. T.; Jayawardhana, D. A.; Guan, X. Y. Stochastic study of the effect of ionic strength on noncovalent interactions in protein pores. Biophys. J. 2008, 94, 1267–1275.

    Article  CAS  Google Scholar 

  26. Zhao, Q. T.; Jayawardhana, D. A.; Wang, D. Q.; Guan, X. Y. Study of peptide transport through engineered protein channels. J. Phys. Chem. B 2009, 113, 3572–3578.

    Article  CAS  Google Scholar 

  27. Singh, P. R.; Bárcena-Uribarri, I.; Modi, N.; Kleinekathöfer, U.; Benz, R.; Winterhalter, M.; Mahendran, K. R. Pulling peptides across nanochannels: Resolving peptide binding and translocation through the hetero-oligomeric channel from Nocardia farcinica. ACS Nano 2012, 6, 10699–10707.

    Article  CAS  Google Scholar 

  28. Boersma, A. J.; Bayley, H. Continuous stochastic detection of amino acid enantiomers with a protein nanopore. Angew. Chem. 2012, 124, 9744–9747.

    Article  Google Scholar 

  29. Nivala, J.; Marks, D. B.; Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 2013, 31, 247–250.

    Article  CAS  Google Scholar 

  30. Mereuta, L.; Asandei, A.; Seo, C. H.; Park, Y.; Luchian, T. Quantitative understanding of pH- and salt-mediated conformational folding of histidine-containing, β-hairpin-like peptides, through single-molecule probing with protein nanopores. ACS Appl. Mater. Interfaces 2014, 6, 13242–13256.

    Article  CAS  Google Scholar 

  31. Mereuta, L.; Roy, M.; Asandei, A.; Lee, J. K.; Park, Y.; Andricioaei, I.; Luchian, T. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Sci. Rep. 2015, 4, 3885.

    Article  CAS  Google Scholar 

  32. Asandei, A.; Chinappi, M.; Kang, H. K.; Seo, C. H.; Mereuta, L.; Park, Y.; Luchian, T. Acidity-mediated, electrostatic tuning of asymmetrically charged peptides interactions with protein nanopores. ACS Appl. Mater. Interfaces 2015, 7, 16706–16714.

    Article  CAS  Google Scholar 

  33. Asandei, A.; Chinappi, M.; Lee, J. K.; Seo, C. H.; Mereuta, L.; Park, Y.; Luchian, T. Placement of oppositely charged aminoacids at a polypeptide termini determines the voltage-controlled braking of polymer transport through nanometer-scale pores. Sci. Rep. 2015, 5, 10419.

    Article  CAS  Google Scholar 

  34. Varongchayakul, N.; Song, J. X.; Meller, A.; Grinstaff, M. W. Single-molecule protein sensing in a nanopore: A tutorial. Chem. Soc. Rev. 2018, 47, 8512–8524.

    Article  CAS  Google Scholar 

  35. Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 2018, 13, 786–796.

    Article  CAS  Google Scholar 

  36. Alfaro, J. A.; Bohländer, P.; Dai, M. J.; Filius, M.; Howard, C. J.; van Kooten, X. F.; Ohayon, S.; Pomorski, A.; Schmid, S.; Aksimentiev, A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 2021, 18, 604–617.

    Article  CAS  Google Scholar 

  37. Hu, Z. L.; Huo, M. Z.; Ying, Y. L.; Long, Y. T. Biological nanopore approach for single-molecule protein sequencing. Angew. Chem. 2021, 133, 14862–14873.

    Article  Google Scholar 

  38. Asandei, A.; Di Muccio, G.; Schiopu, I.; Mereuta, L.; Dragomir, I. S.; Chinappi, M.; Luchian, T. Nanopore-based protein sequencing using biopores: Current achievements and open challenges. Small Methods 2020, 4, 1900595.

    Article  CAS  Google Scholar 

  39. Cressiot, B.; Bacri, L.; Pelta, J. The promise of nanopore technology: Advances in the discrimination of protein sequences and chemical modifications. Small Methods 2020, 4, 2000090.

    Article  CAS  Google Scholar 

  40. Han, A. P.; Schürmann, G.; Mondin, G.; Bitterli, R. A.; Hegelbach, N. G.; de Rooij, N. F.; Staufer, U. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 2006, 88, 093901.

    Article  CAS  Google Scholar 

  41. Uram, J. D.; Ke, K.; Hunt, A. J.; Mayer, M. Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angew. Chem., Int. Ed. 2006, 45, 2281–2285.

    Article  CAS  Google Scholar 

  42. Sexton, L. T.; Horne, L. P.; Sherrill, S. A.; Bishop, G. W.; Baker, L. A.; Martin, C. R. Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 2007, 129, 13144–13152.

    Article  CAS  Google Scholar 

  43. Fologea, D.; Ledden, B.; McNabb, D. S.; Li, J. L. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 2007, 91, 053901.

    Article  CAS  Google Scholar 

  44. Talaga, D. S.; Li, J. L. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 2009, 131, 9287–9297.

    Article  CAS  Google Scholar 

  45. Firnkes, M.; Pedone, D.; Knezevic, J.; Döblinger, M.; Rant, U. Electrically facilitated translocations of proteins through silicon nitride nanopores: Conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 2010, 10, 2162–2167.

    Article  CAS  Google Scholar 

  46. Yusko, E. C.; Johnson, J. M.; Majd, S.; Prangkio, P.; Rollings, R. C.; Li, J. L.; Yang, J.; Mayer, M. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 2011, 6, 253–260.

    Article  CAS  Google Scholar 

  47. Plesa, C.; Kowalczyk, S. W.; Zinsmeester, R.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Fast translocation of proteins through solid state nanopores. Nano Lett. 2013, 13, 658–663.

    Article  CAS  Google Scholar 

  48. Kennedy, E.; Dong, Z. X.; Tennant, C.; Timp, G. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. Nat. Nanotechnol. 2016, 11, 968–976.

    Article  CAS  Google Scholar 

  49. Lamichhane, U.; Islam, T.; Prasad, S.; Weingart, H.; Mahendran, K. R.; Winterhalter, M. Peptide translocation through the mesoscopic channel: Binding kinetics at the single molecule level. Eur. Biophys. J. 2013, 42, 363–369.

    Article  CAS  Google Scholar 

  50. Mahendran, K. R.; Romero-Ruiz, M.; Schlösinger, A.; Winterhalter, M.; Nussberger, S. Protein translocation through Tom40: Kinetics of peptide release. Biophys. J. 2012, 102, 39–47.

    Article  CAS  Google Scholar 

  51. Pastoriza-Gallego, M.; Rabah, L.; Gibrat, G.; Thiebot, B.; van der Goot, F. G.; Auvray, L.; Betton, J. M.; Pelta, J. Dynamics of unfolded protein transport through an aerolysin pore. J. Am. Chem. Soc. 2011, 133, 2923–2931.

    Article  CAS  Google Scholar 

  52. Oukhaled, A.; Bacri, L.; Pastoriza-Gallego, M.; Betton, J. M.; Pelta, J. Sensing proteins through nanopores: Fundamental to applications. ACS Chem. Biol. 2012, 7, 1935–1949.

    Article  CAS  Google Scholar 

  53. Huang, G.; Willems, K.; Bartelds, M.; van Dorpe, P.; Soskine, M.; Maglia, G. Electro-osmotic vortices promote the capture of folded proteins by PlyAB nanopores. Nano Lett. 2020, 20, 3819–3827.

    Article  CAS  Google Scholar 

  54. Bikwemu, R.; Wolfe, A. J.; Xing, X. J.; Movileanu, L. Facilitated translocation of polypeptides through a single nanopore. J. Phys.: Condens. Matter 2010, 22, 454117.

    Google Scholar 

  55. Krishnan, R. S.; Puthumadathil, N.; Shaji, A. H.; Kumar, K. S.; Mohan, G.; Mahendran, K. R. Designed alpha-helical barrels for charge-selective peptide translocation. Chem. Sci. 2021, 12, 639–649.

    Article  Google Scholar 

  56. Thakur, A. K.; Movileanu, L. Real-time measurement of proteinprotein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 2019, 37, 96–101.

    Article  CAS  Google Scholar 

  57. Plesa, C.; Ruitenberg, J. W.; Witteveen, M. J.; Dekker, C. Detection of individual proteins bound along DNA using solid-state nanopores. Nano Lett. 2015, 15, 3153–3158.

    Article  CAS  Google Scholar 

  58. Hornblower, B.; Coombs, A.; Whitaker, R. D.; Kolomeisky, A.; Picone, S. J.; Meller, A.; Akeson, M. Single-molecule analysis of DNA-protein complexes using nanopores. Nat. Methods 2007, 4, 315–317.

    Article  CAS  Google Scholar 

  59. Hu, Y. X.; Ying, Y. L.; Gu, Z.; Cao, C.; Yan, B. Y.; Wang, H. F.; Long, Y. T. Single molecule study of initial structural features on the amyloidosis process. Chem. Commun. 2016, 52, 5542–5545.

    Article  CAS  Google Scholar 

  60. Balme, S.; Coulon, P. E.; Lepoitevin, M.; Charlot, B.; Yandrapalli, N.; Favard, C.; Muriaux, D.; Bechelany, M.; Janot, J. M. Influence of adsorption on proteins and amyloid detection by silicon nitride nanopore. Langmuir 2016, 32, 8916–8925.

    Article  CAS  Google Scholar 

  61. Yusko, E. C.; Bruhn, B. R.; Eggenberger, O. M.; Houghtaling, J.; Rollings, R. C.; Walsh, N. C.; Nandivada, S.; Pindrus, M.; Hall, A. R.; Sept, D. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 2017, 12, 360–367.

    Article  CAS  Google Scholar 

  62. Waduge, P.; Hu, R.; Bandarkar, P.; Yamazaki, H.; Cressiot, B.; Zhao, Q.; Whitford, P. C.; Wanunu, M. Nanopore-based measurements of protein size, fluctuations, and conformational changes. ACS Nano 2017, 11, 5706–5716.

    Article  CAS  Google Scholar 

  63. Van Meervelt, V.; Soskine, M.; Maglia, G. Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore. ACS Nano 2014, 8, 12826–12835.

    Article  CAS  Google Scholar 

  64. Van Meervelt, V.; Soskine, M.; Singh, S.; Schuurman-Wolters, G. K.; Wijma, H. J.; Poolman, B.; Maglia, G. Real-time conformational changes and controlled orientation of native proteins inside a protein nanoreactor. J. Am. Chem. Soc. 2017, 139, 18640–18646.

    Article  CAS  Google Scholar 

  65. Liu, Y.; Wang, K. F.; Wang, Y. Q.; Wang, L. Y.; Yan, S. H.; Du, X. Y.; Zhang, P. K.; Chen, H. Y.; Huang, S. Machine learning assisted simultaneous structural profiling of differently charged proteins in a Mycobacterium smegmatis porin A (MspA) electroosmotic trap. J. Am. Chem. Soc. 2022, 144, 757–768.

    Article  CAS  Google Scholar 

  66. Ouldali, H.; Sarthak, K.; Ensslen, T.; Piguet, F.; Manivet, P.; Pelta, J.; Behrends, J. C.; Aksimentiev, A.; Oukhaled, A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 2020, 38, 176–181.

    Article  CAS  Google Scholar 

  67. Brinkerhoff, H.; Kang, A. S. W.; Liu, J. Q.; Aksimentiev, A.; Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 2021, 374, 1509–1513.

    Article  CAS  Google Scholar 

  68. Huang, G.; Voet, A.; Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun. 2019, 10, 835.

    Article  CAS  Google Scholar 

  69. Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; Pelta, J.; Oukhaled, A. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 2018, 9, 966.

    Article  CAS  Google Scholar 

  70. Chavis, A. E.; Brady, K. T.; Hatmaker, G. A.; Angevine, C. E.; Kothalawala, N.; Dass, A.; Robertson, J. W. F.; Reiner, J. E. Single molecule nanopore spectrometry for peptide detection. ACS Sens. 2017, 2, 1319–1328.

    Article  CAS  Google Scholar 

  71. Huang, G.; Willems, K.; Soskine, M.; Wloka, C.; Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 2017, 8, 935.

    Article  CAS  Google Scholar 

  72. Yuan, B.; Li, S.; Ying, Y. L.; Long, Y. T. The analysis of single cysteine molecules with an aerolysin nanopore. Analyst 2020, 145, 1179–1183.

    Article  CAS  Google Scholar 

  73. Asandei, A.; Rossini, A. E.; Chinappi, M.; Park, Y.; Luchian, T. Protein nanopore-based discrimination between selected neutral amino acids from polypeptides. Langmuir 2017, 33, 14451–14459.

    Article  CAS  Google Scholar 

  74. Restrepo-Pérez, L.; Huang, G.; Bohländer, P. R.; Worp, N.; Eelkema, R.; Maglia, G.; Joo, C.; Dekker, C. Resolving chemical modifications to a single amino acid within a peptide using a biological nanopore. ACS Nano 2019, 13, 13668–13676.

    Article  CAS  Google Scholar 

  75. Nir, I.; Huttner, D.; Meller, A. Direct sensing and discrimination among ubiquitin and ubiquitin chains using solid-state nanopores. Biophys. J. 2015, 108, 2340–2349.

    Article  CAS  Google Scholar 

  76. Hu, R.; Rodrigues, J. V.; Waduge, P.; Yamazaki, H.; Cressiot, B.; Chishti, Y.; Makowski, L.; Yu, D. P.; Shakhnovich, E.; Zhao, Q. et al. Differential enzyme flexibility probed using solid-state nanopores. ACS Nano 2018, 12, 4494–4502.

    Article  CAS  Google Scholar 

  77. Rosen, C. B.; Rodriguez-Larrea, D.; Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 2014, 32, 179–181.

    Article  CAS  Google Scholar 

  78. Restrepo-Pérez, L.; Wong, C. H.; Maglia, G.; Dekker, C.; Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 2019, 19, 7957–7964.

    Article  CAS  Google Scholar 

  79. Li, S.; Wu, X. Y.; Li, M. Y.; Liu, S. C.; Ying, Y. L.; Long, Y. T. T232K/K238Q aerolysin nanopore for mapping adjacent phosphorylation sites of a single tau peptide. Small Methods 2020, 4, 2000014.

    Article  CAS  Google Scholar 

  80. Yan, S. H.; Zhang, J. Y.; Wang, Y.; Guo, W. M.; Zhang, S. Y.; Liu, Y.; Cao, J.; Wang, Y. Q.; Wang, L. Y.; Ma, F. B. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 2021, 21, 6703–6710.

    Article  CAS  Google Scholar 

  81. Bakshloo, M. A.; Talarimoghari, M.; Ouldali, H.; Behrends, J. C.; Oukhaled, A. Protein fingerprinting using the aerolysin nanopore. Biophys. J. 2020, 118, 475a.

    Article  Google Scholar 

  82. Lucas, F. L. R.; Versloot, R. C. A.; Yakovlieva, L.; Walvoort, M. T. C.; Maglia, G. Protein identification by nanopore peptide profiling. Nat. Commun. 2021, 12, 5795.

    Article  CAS  Google Scholar 

  83. Bakshloo, M. A.; Kasianowicz, J. J.; Pastoriza-Gallego, M.; Mathé, J.; Daniel, R.; Piguet, F.; Oukhaled, A. Nanopore-based protein identification. J. Am. Chem. Soc. 2022, 144, 2716–2725.

    Article  CAS  Google Scholar 

  84. Parker, M. W.; Buckley, J. T.; Postma, J. P. M.; Tucker, A. D.; Leonard, K.; Pattus, F.; Tsernoglou, D. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 1994, 367, 292–295.

    Article  CAS  Google Scholar 

  85. Wilmsen, H. U.; Pattus, F.; Buckley, J. T. Aerolysin, a hemolysin from Aeromonas hydrophila, forms voltage-gated channels in planar lipid bilayers. J. Membrane Biol. 1990, 115, 71–81.

    Article  CAS  Google Scholar 

  86. Degiacomi, M. T.; Iacovache, I.; Pernot, L.; Chami, M.; Kudryashev, M.; Stahlberg, H.; van der Goot, F. G.; Dal Peraro, M. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 2013, 9, 623–629.

    Article  CAS  Google Scholar 

  87. Li, S.; Cao, C.; Yang, J.; Long, Y. T. Detection of peptides with different charges and lengths by using the aerolysin nanopore. ChemElectroChem 2019, 6, 126–129.

    Article  CAS  Google Scholar 

  88. Hu, F. Z.; Angelov, B.; Li, S.; Li, N.; Lin, X. B.; Zou, A. H. Single-molecule study of peptides with the same amino acid composition but different sequences by using an aerolysin nanopore. ChemBioChem 2020, 21, 2467–2473.

    Article  CAS  Google Scholar 

  89. Sigworth, F. J.; Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 1987, 52, 1047–1054.

    Article  CAS  Google Scholar 

  90. Yusko, E. C.; Prangkio, P.; Sept, D.; Rollings, R. C.; Li, J. L.; Mayer, M. Single-particle characterization of Aβ oligomers in solution. ACS Nano 2012, 6, 5909–5919.

    Article  CAS  Google Scholar 

  91. Niu, H. Y.; Li, M. Y.; Ying, Y. L.; Long, Y. T. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Chem. Sci. 2022, 13, 2456–2461.

    Article  CAS  Google Scholar 

  92. Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Probing driving forces in aerolysin and α-hemolysin biological nanopores: Electrophoresis versus electroosmosis. Nanoscale 2016, 8, 18352–18359.

    Article  CAS  Google Scholar 

  93. Piguet, F.; Discala, F.; Breton, M. F.; Pelta, J.; Bacri, L.; Oukhaled, A. Electroosmosis through α-hemolysin that depends on alkali cation type. J. Phys. Chem. Lett. 2014, 5, 4362–4367.

    Article  CAS  Google Scholar 

  94. Di Muccio, G.; della Rocca, B. M.; Chinappi, M. Geometrically induced selectivity and unidirectional electroosmosis in uncharged nanopores. ACS Nano, in press, https://doi.org/10.1021/acsnano.1c03017.

  95. Piguet, F.; Ensslen, T.; Bakshloo, M. A.; Talarimoghari, M.; Ouldali, H.; Baaken, G.; Zaitseva, E.; Pastoriza-Gallego, M.; Behrends, J. C.; Oukhaled, A. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing. Methods Enzymol. 2021, 649, 587–634.

    Article  CAS  Google Scholar 

  96. Krasilnikov, O. V.; Rodrigues, C. G.; Bezrukov, S. M. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys. Rev. Lett. 2006, 97, 018301.

    Article  CAS  Google Scholar 

  97. Rodrigues, C. G.; Machado, D. C.; Chevtchenko, S. F.; Krasilnikov, O. V. Mechanism of KCl enhancement in detection of nonionic polymers by nanopore sensors. Biophys. J. 2008, 95, 5186–5192.

    Article  CAS  Google Scholar 

  98. Baaken, G.; Halimeh, I.; Bacri, L.; Pelta, J.; Oukhaled, A.; Behrends, J. C. High-resolution size-discrimination of single nonionic synthetic polymers with a highly charged biological nanopore. ACS Nano 2015, 9, 6443–6449.

    Article  CAS  Google Scholar 

  99. Li, M. Y.; Ying, Y. L.; Yu, J.; Liu, S. C.; Wang, Y. Q.; Li, S.; Long, Y. T. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 2021, 1, 967–976.

    Article  CAS  Google Scholar 

  100. Breton, M. F.; Discala, F.; Bacri, L.; Foster, D.; Pelta, J.; Oukhaled, A. Exploration of neutral versus polyelectrolyte behavior of poly(ethylene glycol)s in alkali ion solutions using single-nanopore recording. J. Phys. Chem. Lett. 2013, 4, 2202–2208.

    Article  CAS  Google Scholar 

  101. Iacovache, I.; Degiacomi, M. T.; Pernot, L.; Ho, S.; Schiltz, M.; Dal Peraro, M.; van der Goot, F. G. Dual chaperone role of the C-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin. PLoS Pathog. 2011, 7, e1002135.

    Article  CAS  Google Scholar 

  102. Bakshloo, M. A.; Yahiaoui, S.; Ouldali, H.; Pastoriza-Gallego, M.; Piguet, F.; Oukhaled, A. On possible trypsin-induced biases in peptides analysis with aerolysin nanopore. Proteomics, in press, https://doi.org/10.1002/pmic.202100056.

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche ANR (ANR-17-CE09-0032-01 to A. O., M. P.-G., and F. P.), NIST Office of Law Enforcement Standards, and a Marie Skłodowska-Curie/Freiburg Institute for Advanced Studies Senior Fellowship (both to J. J. K.). We thank F. Gisou van der Goot (Ecole Polytechnique Federale de Lausanne, Switzerland) for providing the pET22b-proAL plasmid containing the proaerolysin sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Oukhaled.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshloo, M.A., Yahiaoui, S., Piguet, F. et al. Polypeptide analysis for nanopore-based protein identification. Nano Res. 15, 9831–9842 (2022). https://doi.org/10.1007/s12274-022-4610-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4610-1

Keywords

Navigation