Skip to main content
Log in

NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ovarian cancer is a global problem, and is typically diagnosed in the middle or late stages, with a mysterious abdominal mass or atypical abdominal metastases due to the lack of specific initial diagnostic methods. Dual-modal near-infrared II (NIR-II, 1,000–1,700 nm) fluorescence/photoacoustic imaging has great potential in early ovarian cancer diagnosis and image-guided surgery due to its high sensitivity and deep penetration. Herein, we report a novel organic NIR-II dye (H10) with excellent aggregation-induced-emission (AIE) characteristics (I/I0 > 1.6) utilizing a selenadiazolo-[3,4-f]benzo[c][1,2,5]thiadiazole (ST)-based building block. Then, water-soluble and biocompatible H10@follicle-stimulating hormone (H10@FSH) dots with superior optical/photoacoustic properties and a tenfold increase in ovarian-specific targeting ability were synthesized. Finally, for the first time, in vivo dual-mode NIR-II fluorescent/photoacoustic (PA) imaging and image-guided surgery of patient-derived tumor xenograft (PDTX) and micro-metastatic abdominal ovarian cancer lesions were investigated. This novel strategy will establish a new method for early detection of ovarian cancer and significantly improve the prognosis of ovarian cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuroki, L.; Guntupalli, S. R. Treatment of epithelial ovarian cancer. BMJ 2020, 371, m3773.

    Article  Google Scholar 

  2. Yeung, T. L.; Leung, C. S.; Yip, K. P.; Yeung, C. L. A.; Wong, S. T. C.; Mok, S. C. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme:Cell and molecular processes in cancer metastasis. Am. J. Physiol. Cell Physiol. 2015, 309, C444–C456.

    Article  CAS  Google Scholar 

  3. Smith, L. H.; Morris, C. R.; Yasmeen, S.; Parikh-Patel, A.; Cress, R. D.; Romano, P. S. Ovarian cancer: Can we make the clinical diagnosis earlier. Cancer 2005, 104, 1398–1407.

    Article  Google Scholar 

  4. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020, 71, 209–249.

    Article  Google Scholar 

  5. van De Vrie, R.; Rutten, M. J.; Asseler, J. D.; Leeflang, M. M. G.; Kenter, G. G.; Mol, B. W. J.; Buist, M. Laparoscopy for diagnosing resectability of disease in women with advanced ovarian cancer. Cochrane Database Syst. Rev. 2009, 23, CD009786.

    Google Scholar 

  6. Sehgal, N. Efficacy of color Doppler ultrasonography in differentiation of ovarian masses. J. Midlife Health 2009, 13, 22–28.

    Google Scholar 

  7. Guerriero, S.; Alcazar, J. L.; Ajossa, S.; Galvan, R.; Laparte, C.; Garcia-Manero, M.; Lopez-García, G.; Melis, G. B. Transvaginal color doppler imaging in the detection of ovarian cancer in a large study population. Int. J. Gynecol. Cancer 2000, 23, 781–786.

    Google Scholar 

  8. Chandrashekhara, S. H.; Triveni, G. S.; Kumar, R. Imaging of peritoneal deposits in ovarian cancer: A pictorial review. World J. Radiol. 2006, 8, 513–517.

    Article  Google Scholar 

  9. Wanderi, K.; Cui, Z. Q. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration 2022, 2, 20210097.

    Article  Google Scholar 

  10. Wang, P. Y.; Fan, Y.; Lu, L. F.; Liu, L.; Fan, L. L.; Zhao, M. Y.; Xie, Y.; Xu, C. J.; Zhang, F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 2008, 9, 2898.

    Article  Google Scholar 

  11. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2007, 1, 0010.

    Article  Google Scholar 

  12. Li, Y.; Liu, Y. F.; Li, Q. Q.; Zeng, X. D.; Tian, T.; Zhou, W. Y.; Cui, Y.; Wang, X. K.; Cheng, X. D.; Ding, Q. H. et al. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem. Sci. 2020, 11, 2621–2626.

    Article  Google Scholar 

  13. Ding, B. B.; Xiao, Y. L.; Zhou, H.; Zhang, X.; Qu, C. R.; Xu, F. C.; Deng, Z. X.; Cheng, Z.; Hong, X. C. Polymethine thiopyrylium fluorophores with absorption beyond 1,000 nm for biological imaging in the second near-infrared subwindow. J. Med. Chem. 2009, 62, 2049–2059.

    Article  Google Scholar 

  14. Zhao, M. Y.; Li, B. H.; Wu, Y. F.; He, H. S.; Zhu, X. Y.; Zhang, H. X.; Dou, C. R.; Feng, L. S.; Fan, Y.; Zhang, F. A tumor-microenvironment-responsive lanthanide-cyanine fret sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma. Adv. Mater. 2020, 32, e2001172.

    Article  Google Scholar 

  15. Yao, D. F.; Wang, Y. S.; Zou, R. F.; Bian, K. X.; Liu, P.; Shen, S. Z.; Yang, W. T.; Zhang, B. B.; Wang, D. B. Molecular engineered squaraine nanoprobe for NIR-II/photoacoustic imaging and photothermal therapy of metastatic breast cancer. ACS Appl. Mater. Interfaces 2020, 12, 4276–4284.

    Article  CAS  Google Scholar 

  16. Liu, Y. S.; Li, Y.; Koo, S.; Sun, Y.; Liu, Y. X.; Liu, X.; Pan, Y. N.; Zhang, Z. Y.; Du, M. X.; Lu, S. Y. et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: From strategic design toward molecular imaging and theranostics. Chem. Rev. 2022, 122, 209–268.

    Article  CAS  Google Scholar 

  17. Guo, Z. Y.; Cui, Z. Q. Fluorescent nanotechnology for in vivo imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 13, e1705.

    Google Scholar 

  18. Cheng, X. D.; Zhang, C.; Shen, K.; Liu, H. F.; Bai, C. H.; Ding, Q. H.; Guan, M. T.; Wu, J. Z.; Tian, Z. Q.; Chen, D. L. et al. Novel diketopyrrolopyrrole NIR-II fluorophores and DDR inhibitors for in vivo chemo-photodynamic therapy of osteosarcoma. Chem. Eng. J. 2022, 446, 136929.

    Article  CAS  Google Scholar 

  19. Li, Y.; Zhu, H.; Wang, X. B.; Cui, Y.; Gu, L. J.; Hou, X. W.; Guan, M. T.; Wu, J. Z.; Xiao, Y. L.; Xiong, X. X. et al. Small-molecule fluorophores for near-infrared IIb imaging and image-guided therapy of vascular diseases. CCS Chem., in press, https://doi.org/10.31635/ccschem.022.202101547.

  20. Li, Y.; Gao, J. F.; Wang, S. P.; Du, M. X.; Hou, X. W.; Tian, T.; Qiao, X.; Tian, Z. Q.; Stang, P. J.; Li, S. J. et al. Self-assembled NIR-II fluorophores with ultralong blood circulation for cancer imaging and image-guided surgery. J. Med. Chem. 2022, 65, 2078–2090.

    Article  CAS  Google Scholar 

  21. Li, Y.; Gao, J. F.; Wang, S. P.; Li, S. J.; Hou, X. W.; Pan, Y. N.; Gao, J. L.; Qiao, X.; Tian, Z. Q.; Chen, D. L. et al. Organic NIR-II dyes with ultralong circulation persistence for image-guided delivery and therapy. J. Control. Release 2022, 342, 157–169.

    Article  CAS  Google Scholar 

  22. Liu, Y. S.; Li, Q. Q.; Gu, M. J.; Lu, D. S.; Xiong, X. X.; Zhang, Z. Y.; Pan, Y. N.; Liao, Y. Q.; Ding, Q. H.; Gong, W. X. et al. A second near-infrared Ru(II) polypyridyl complex for synergistic chemo-photothermal therapy. J. Med. Chem. 2022, 65, 2225–2237.

    Article  CAS  Google Scholar 

  23. Chen, Y. S.; Zhao, Y.; Yoon, S. J.; Gambhir, S. S.; Emelianov, S. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechnol. 2009, 14, 465–472.

    Article  CAS  Google Scholar 

  24. Guo, B.; Sheng, Z. H.; Hu, D. H.; Liu, C. B.; Zheng, H. R.; Liu, B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 2008, 33, e1802591.

    Google Scholar 

  25. Liu, G. Y.; Zhu, J. W.; Guo, H.; Sun, A. H.; Chen, P.; Xi, L.; Huang, W.; Song, X. J.; Dong, X. C. Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew. Chem., Int. Ed. 2009, 58, 18641–18646.

    Article  Google Scholar 

  26. Hu, X. M.; Tang, Y. F.; Hu, Y. X.; Lu, F.; Lu, X. M.; Wang, Y. Q.; Li, J.; Li, Y. Y.; Ji, Y.; Wang, W. J. et al. Gadolinium-chelated conjugated polymer-based nanotheranostics for photoacoustic/magnetic resonance/NIR-II fluorescence imaging-guided cancer photothermal therapy. Theranostics 2019, 9, 4168–4181.

    Article  CAS  Google Scholar 

  27. Zhang, R. P.; Xu, Y. L.; Zhang, Y.; Kim, H. S.; Sharma, A.; Gao, J.; Yang, G. F.; Kim, J. S.; Sun, Y. Rational design of a multifunctional molecular dye for dual-modal NIR-II/photoacoustic imaging and photothermal therapy. Chem. Sci. 2019, 13, 8348–8353.

    Article  Google Scholar 

  28. Jiang, Y. Y.; Pu, K. Y. Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv. Biosyst. 2018, 2, 1700262.

    Article  Google Scholar 

  29. Fu, Q. R.; Zhu, R.; Song, J. B.; Yang, H. H.; Chen, X. Y. Photoacoustic imaging: Contrast agents and their biomedical applications. Adv. Mater. 2019, 31, 1805875.

    Google Scholar 

  30. Li, Y.; Lin, J. Y.; Wang, P. Y.; Luo, Q.; Lin, H. R.; Zhang, Y.; Hou, Z. Q.; Liu, J. F.; Liu, X. L. Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy. ACS Nano 2019, 13, 12912–12928.

    Article  CAS  Google Scholar 

  31. Wu, C. X.; Zhang, Y. J.; Li, Z.; Li, C. Y.; Wang, Q. B. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo. Nanoscale 2016, 8, 12531–12539.

    Article  CAS  Google Scholar 

  32. Chen, D. D.; Liu, Y.; Zhang, Z.; Liu, Z. H.; Fang, X. F.; He, S. Q.; Wu, C. F. NIR-II fluorescence imaging reveals bone marrow retention of small polymer nanoparticles. Nano Lett. 2021, 211, 798–805.

    Article  Google Scholar 

  33. Du, B. L.; Qu, C. R.; Qian, K.; Ren, Y.; Li, Y. S.; Cui, X. H.; He, S. Q.; Wu, Y. F.; Ko, T.; Liu, R. Q. et al. An IR820 dye-protein complex for second near-infrared window and photoacoustic imaging. Adv. Opt. Mater. 2020, 8, 1901471.

    Article  CAS  Google Scholar 

  34. Cheng, K.; Chen, H.; Jenkins, C. H.; Zhang, G. L.; Zhao, W.; Zhang, Z.; Han, F.; Fung, J.; Yang, M.; Jiang, Y. X. et al. Synthesis, characterization, and biomedical applications of a targeted dualmodal near-infrared-II fluorescence and photoacoustic imaging nanoprobe. ACS Nano 2017, 11, 12276–12291.

    Article  CAS  Google Scholar 

  35. Wang, Q.; Dai, Y. N.; Xu, J. Z.; Cai, J.; Niu, X. R.; Zhang, L.; Chen, R. F.; Shen, Q. M.; Huang, W.; Fan, Q. L. All-in-one phototheranostics: Single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 2019, 29, 1901480.

    Article  Google Scholar 

  36. Ma, H. L.; Liu, C. C.; Hu, Z. B.; Yu, P. P.; Zhu, X. F.; Ma, R.; Sun, Z. R.; Zhang, C. H.; Sun, H. T.; Zhu, S. J. et al. Propylenedioxy thiophene donor to achieve NIR-II molecular fluorophores with enhanced brightness. Chem. Mater. 2020, 32, 2061–2069.

    Article  CAS  Google Scholar 

  37. Zhou, H.; Zeng, X. D.; Li, A. G.; Zhou, W. Y.; Tang, L.; Hu, W. B.; Fan, Q. L.; Meng, X. L.; Deng, H.; Duan, L. et al. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat. Commun. 2020, 11, 6183.

    Article  CAS  Google Scholar 

  38. Lin, J. C.; Zeng, X. D.; Xiao, Y. L.; Tang, L.; Nong, J. X.; Liu, Y. F.; Zhou, H.; Ding, B. B.; Xu, F. C.; Tong, H. X. et al. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem. Sci. 2019, 10, 1219–1226.

    Article  CAS  Google Scholar 

  39. Wang, Y.; Hasegawa, T.; Matsumoto, H.; Mori, T.; Michinobu, T. D-A1-D-A2 backbone strategy for benzobisthiadiazole based n-channel organic transistors:Clarifying the selenium-substitution effect on the molecular packing and charge transport properties in electron-deficient polymers. Adv. Funct. Mater. 2017, 27, 1701486.

    Article  Google Scholar 

  40. Zhang, Z. Z.; Li, Y. W.; Cai, G. L.; Zhang, Y. H.; Lu, X. H.; Lin, Y. Z. Selenium heterocyclic electron acceptor with small urbach energy for As-cast high-performance organic solar cells. J. Am. Chem. Soc. 2020, 142, 18741–18745.

    Article  CAS  Google Scholar 

  41. Zhang, X. Y.; Chen, J.; Zheng, Y. F.; Gao, X. L.; Kang, Y.; Liu, J. C.; Cheng, M. J.; Sun, H.; Xu, C. J. Follicle-stimulating hormone peptide can facilitate paclitaxel nanoparticles to target ovarian carcinoma in vivo. Cancer Res. 2009, 69, 6506–6514.

    Article  CAS  Google Scholar 

  42. Wang, P. Y.; Jiang, S. H.; Li, Y.; Luo, Q.; Lin, J. Y.; Hu, L. D.; Fan, L. L. Downshifting nanoprobes with follicle stimulating hormone peptide fabrication for highly efficient NIR II fluorescent bioimaging guided ovarian tumor surgery. Nanomed. Nanotechnol. Biol. Med. 2020, 28, 102198.

    Article  CAS  Google Scholar 

  43. Liu, Y. Y.; Yang, X. Q.; Gong, H.; Jiang, B. W.; Wang, H.; Xu, G. Q.; Deng, Y. Assessing the effects of norepinephrine on single cerebral microvessels using optical-resolution photoacoustic microscope. J. Biomed. Opt. 2013, 18, 076007.

    Article  Google Scholar 

  44. Antaris, A. L.; Chen, H.; Cheng, K.; Sun, Y.; Hong, G. S.; Qu, C. R.; Diao, S.; Deng, Z. X.; Hu, X. M.; Zhang, B. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 2016, 15, 235–242.

    Article  CAS  Google Scholar 

  45. Chen, C. P.; Wu, P. J.; Liou, S. Y.; Chan, Y. H. Ultrabright benzoselenadiazole-based semiconducting polymer dots for specific cellular imaging. RSC Adv. 2013, 3, 17507–17514.

    Article  CAS  Google Scholar 

  46. Liu, S. J.; Li, Y. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 2021, 12, 3427–3436.

    Article  CAS  Google Scholar 

  47. Sheng, Z. H.; Guo, B.; Hu, D. H.; Xu, S. D.; Wu, W. B.; Liew, W. H.; Yao, K.; Jiang, J. Y.; Liu, C. B.; Zheng, H. R. et al. Bright aggregation-induced-emission dots for targeted synergetic NIR-II fluorescence and NIR-I photoacoustic imaging of orthotopic brain tumors. Adv. Mater. 2018, 30, 1800766.

    Article  Google Scholar 

  48. Li, Q. Q.; Ding, Q. H.; Li, Y.; Zeng, X. D.; Liu, Y. S.; Lu, S. Y.; Zhou, H.; Wang, X. F.; Wu, J. Z.; Meng, X. L. et al. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem. Commun. 2020, 56, 3289–3292.

    Article  CAS  Google Scholar 

  49. Li, W. C.; Hu, J.; Wang, J. J.; Tang, W.; Yang, W. T.; Liu, Y. Q.; Li, R.; Liu, H. Polydopamine-mediated polypyrrole/doxorubicin nanocomplex for chemotherapy-enhanced photothermal therapy in both NIR-I and NIR-II biowindows against tumor cells. J. Appl. Polym. Sci. 2020, 137, 49239.

    Article  CAS  Google Scholar 

  50. Antaris, A. L.; Chen, H.; Diao, S.; Ma, Z. R.; Zhang, Z.; Zhu, S. J.; Wang, J.; Lozano, A. X.; Fan, Q. L.; Chew, L. et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat. Commun. 2017, 8, 15269.

    Article  CAS  Google Scholar 

  51. Bhasikuttan, A. C.; Mohanty, J.; Nau, W. M.; Pal, H. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly. Angew. Chem., Int. Ed. 2007, 46, 4120–4122.

    Article  CAS  Google Scholar 

  52. Gao, H.; Korn, J. M.; Ferretti, S.; Monahan, J. E.; Wang, Y. Z.; Singh, M.; Zhang, C.; Schnell, C.; Yang, G. Z.; Zhang, Y. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 2015, 21, 1318–1325.

    Article  CAS  Google Scholar 

  53. Tentler, J. J.; Tan, A. C.; Weekes, C. D.; Jimeno, A.; Leong, S.; Pitts, T. M.; Arcaroli, J. J.; Messersmith, W. A.; Eckhardt, S. G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350.

    Article  CAS  Google Scholar 

  54. Choi, S. Y. C.; Lin, D.; Gout, P. W.; Collins, C. C.; Xu, Y.; Wang, Y. Z. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv. Drug Deliv. Rev. 2014, 79–80, 222–237.

    Article  Google Scholar 

  55. Ren, X. N.; Liu, W. L.; Zhou, H. J.; Wei, J. S.; Mu, C. P.; Wan, Y.; Yang, X. Q.; Nie, A. M.; Liu, Z. Y.; Yang, X. L. et al. Biodegradable 2D GeP nanosheets with high photothermal conversion efficiency for multimodal cancer theranostics. Chem. Eng. J. 2022, 431, 134176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and development Program of China (Nos. 2020YFA0908800 and 2015DFA30440), the National Natural Science Foundation of China (Nos. 82111530209, 81773674, 81573383, 91959103, and 61971447), Hubei Province Scientific and Technical Innovation Key Project (No. 2020BAB058), Beijing Natural Science Foundation (No. JQ18023), Shenzhen Science and Technology Research Grant (No. JCYJ20190808152019182), the Local Development Funds of Science and Technology Department of Tibet (Nos. XZ202102YD0033C and XZ202202YD0021C), and the Fundamental Research Funds for the Central Universities. We would like to thank Prof. Dr. Xiaoquan Yang and Miss Ximiao Yu (Huazhong University of Science and Technology) for their generous help in providing a home-made PA microscope setup in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfu Wu or Yuling Xiao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Xue, L., Yang, M. et al. NIR-II fluorescence/photoacoustic imaging of ovarian cancer and peritoneal metastasis. Nano Res. 15, 9183–9191 (2022). https://doi.org/10.1007/s12274-022-4592-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4592-z

Keywords

Navigation