Skip to main content
Log in

Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Alkyne semi-hydrogenation is extremely significant for the production of polymer-grade ethylene and lots of fine chemicals in modern industry. Many efforts had been devoted to regulate the electronic and geometric structure of active ensembles for suppressing side reactions, including over-hydrogenation and oligomerization. Several strategies, such as alloying, surface decoration, atomization of metal centers, and others, were developed to promote the selective production of target alkenes in alkyne hydrogenation. In this review, the basic principles within reaction mechanisms and catalyst optimization would be discussed in detail. And an updated perspective to the fabrication of next-generation catalysts for alkyne semi-hydrogenation is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodziński, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 2006, 48, 91–144.

    Article  Google Scholar 

  2. Bridier, B.; López, N.; Pérez-Ramírez, J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans. 2010, 39, 8412–8419.

    Article  CAS  Google Scholar 

  3. Delgado, J. A.; Benkirane, O.; Claver, C.; Curulla-Ferré, D.; Godard, C. Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Trans. 2017, 46, 12381–12403.

    Article  CAS  Google Scholar 

  4. Wang, Z.; Mao, S. J.; Li, H. R.; Wang, Y. How to synthesize vitamin E. Acta Phys. Chim. Sin. 2018, 34, 598–617.

    CAS  Google Scholar 

  5. Liguori, F.; Barbaro, P. Green semi-hydrogenation of alkynes by Pd@borate monolith catalysts under continuous flow. J. Catal. 2014, 311, 212–220.

    Article  CAS  Google Scholar 

  6. Luo, Q.; Wang, Z.; Chen, Y. Z.; Mao, S. J.; Wu, K. J.; Zhang, K. C.; Li, Q. C.; Lv, G. F.; Huang, G. D.; Li, H. R. et al. Dynamic modification of palladium catalysts with chain alkylamines for the selective hydrogenation of alkynes. ACS Appl. Mater. Interfaces 2021, 13, 31775–31784.

    Article  CAS  Google Scholar 

  7. Wang, Z. S.; Garg, A.; Wang, L. X.; He, H. R.; Dasgupta, A.; Zanchet, D.; Janik, M. J.; Rioux, R. M.; Román-Leshkov, Y. Enhancement of alkyne semi-hydrogenation selectivity by electronic modification of platinum. ACS Catal. 2000, 10, 6763–6770.

    Article  Google Scholar 

  8. Gilb, S.; Arenz, M.; Heiz, U. The polymerization of acetylene on supported metal clusters. Low Temp. Phys. 2006, 32, 1097–1103.

    Article  CAS  Google Scholar 

  9. Abbet, S.; Sanchez, A.; Heiz, U.; Schneider, W. D.; Ferrari, A. M.; Pacchioni, G.; Rösch, N. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough! J. Am. Chem. Soc. 2000, 122, 3453–3457.

    Article  CAS  Google Scholar 

  10. Bond, G. C.; Webb, G.; Wells, P. B.; Winterbottom, J. M. Patterns of behavior in catalysis by metals. J. Catal. 1962, 1, 74–84.

    Article  CAS  Google Scholar 

  11. Boitiaux, J. P.; Cosyns, J.; Robert, E. Liquid phase hydrogenation of unsaturated hydrocarbons on palladium, platinum and rhodium catalysts. Part I: Kinetic study of 1-butene, 1,3-butadiene and 1-butyne hydrogenation on platinum. Appl. Catal. 1987, 32, 145–168.

    Article  CAS  Google Scholar 

  12. Boitiaux, J. P.; Cosyns, J.; Robert, E. Liquid phase hydrogenation of unsaturated hydrocarbons on palladium, platinum and rhodium catalysts. Part II: Kinetic study of 1-butene, 1,3-butadiene and 1-butyne hydrogenation on rhodium; comparison with platinum and palladium. Appl. Catal. 1987, 32, 169–183.

    Article  CAS  Google Scholar 

  13. Kuo, C. T.; Lu, Y. B.; Kovarik, L.; Engelhard, M.; Karim, A. M. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters. ACS Catal. 2019, 9, 11030–11041.

    Article  CAS  Google Scholar 

  14. Bridier, B.; Pérez-Ramírez, J. Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation. J. Am. Chem. Soc. 2010, 132, 4321–4327.

    Article  CAS  Google Scholar 

  15. Gluhoi, A. C.; Bakker, J. W.; Nieuwenhuys, B. E. Gold, still a surprising catalyst: Selective hydrogenation of acetylene to ethylene over Au nanoparticles. Catal. Today 2010, 154, 13–20.

    Article  CAS  Google Scholar 

  16. Carrasco, J.; Vilé, G.; Fernández-Torre, D.; Pérez, R.; Pérez-Ramírez, J.; Ganduglia-Pirovano, M. V. Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J. Phys. Chem. C 2014, 118, 5352–5360.

    Article  CAS  Google Scholar 

  17. Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. One-step synthesis of core-gold/shell-ceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. J. Am. Chem. Soc. 2015, 137, 13452–13455.

    Article  CAS  Google Scholar 

  18. Büchele, S.; Chen, Z. P.; Fako, E.; Krumeich, F.; Hauert, R.; Safonova, O. V.; López, N.; Mitchell, S.; Pérez-Ramírez, J. Carrier-induced modification of palladium nanoparticles on porous boron nitride for alkyne semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19639–19644.

    Article  Google Scholar 

  19. Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

    Article  Google Scholar 

  20. López, N.; Vargas-Fuentes, C. Promoters in the hydrogenation of alkynes in mixtures: Insights from density functional theory. Chem. Commun. 2012, 48, 1379–1391.

    Article  Google Scholar 

  21. Ma, T.; Wang, S.; Chen, M. D.; Maligal-Ganesh, R. V.; Wang, L. L.; Johnson, D. D.; Kramer, M. J.; Huang, W. Y.; Zhou, L. Toward phase and catalysis control: Tracking the formation of intermetallic nanoparticles at atomic scale. Chem 2019, 5, 1235–1247.

    Article  CAS  Google Scholar 

  22. Hoffmann La Roche. Hydrogenation of acetylenic bond utilizing a palladium-lead catalyst. U. S. Patent 2, 681, 938A, June 22, 1954.

  23. Ota, A.; Armbrüster, M.; Behrens, M.; Rosenthal, D.; Friedrich, M.; Kasatkin, I.; Girgsdies, F.; Zhang, W.; Wagner, R.; Schlögl, R. Intermetallic compound Pd2Ga as a selective catalyst for the semihydrogenation of acetylene: From model to high performance systems. J. Phys. Chem. C 2011, 115, 1368–1374.

    Article  CAS  Google Scholar 

  24. Lou, B. H.; Kang, H. Q.; Yuan, W. T.; Ma, L.; Huang, W. X.; Wang, Y.; Jiang, Z.; Du, Y. H.; Zou, S. H.; Fan, J. Highly selective acetylene semihydrogenation catalyst with an operation window exceeding 150 °C. ACS Catal. 2021, 11, 6073–6080.

    Article  CAS  Google Scholar 

  25. Matselko, O.; Zimmermann, R. R.; Ormeci, A.; Burkhardt, U.; Gladyshevskii, R.; Grin, Y.; Armbrüster, M. Revealing electronic influences in the semihydrogenation of acetylene. J. Phys. Chem. C 2018, 122, 21891–21896.

    Article  CAS  Google Scholar 

  26. Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal. 2013, 3, 1700–1708.

    Article  CAS  Google Scholar 

  27. Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.

    Article  CAS  Google Scholar 

  28. Vilé, G.; Bridier, B.; Wichert, J.; Pérez-Ramírez, J. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angew. Chem., Int. Ed. 2012, 57, 8620–8623.

    Article  Google Scholar 

  29. Vilé, G.; Colussi, S.; Krumeich, F.; Trovarelli, A.; Pérez-Ramírez, J. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angew. Chem., Int. Ed. 2014, 53, 12069–12072.

    Article  Google Scholar 

  30. Albani, D.; Capdevila-Cortada, M.; Vilé, G.; Mitchell, S.; Martin, O.; López, N.; Pérez-Ramírez, J. Semihydrogenation of acetylene on indium oxide: Proposed single-ensemble catalysis. Angew. Chem., Int. Ed. 2017, 56, 10755–10760.

    Article  CAS  Google Scholar 

  31. Zhang, W. J.; Qin, R. X.; Fu, G.; Zheng, N. F. Heterogeneous isomerization for stereoselective alkyne hydrogenation to transalkene mediated by frustrated hydrogen atoms. J. Am. Chem. Soc. 2021, 143, 15882–15890.

    Article  CAS  Google Scholar 

  32. Boitiaux, J. P.; Cosyns, J.; Vasudevan, S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed palladium catalyst: Part I: Behaviour of small metal particles. Appl. Catal. 1983, 6, 41–51.

    Article  CAS  Google Scholar 

  33. Boitiaux, J. P.; Cosyns, J.; Vasudevan, S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed Pd catalyst.: Part II:Ligand effect of piperidine. Appl. Catal. 1985, 15, 317–326.

    Article  CAS  Google Scholar 

  34. Shen, L. F.; Mao, S. J.; Li, J. Q.; Li, M. M.; Chen, P.; Li, H. R.; Chen, Z. R.; Wang, Y. PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. J. Catal. 2017, 350, 13–20.

    Article  CAS  Google Scholar 

  35. Goo, B. S.; Ham, K.; Han, Y. J.; Lee, S.; Jung, H.; Kwon, Y.; Kim, Y.; Hong, J. W.; Han, S. W. Surface engineering of palladium nanocrystals: Decoupling the activity of different surface sites on nanocrystal catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202923.

    Article  CAS  Google Scholar 

  36. Crespo-Quesada, M.; Yarulin, A.; Jin, M. S.; Xia, Y. N.; Kiwi-Minsker, L. Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective. J. Am. Chem. Soc. 2011, 133, 12787–12794.

    Article  CAS  Google Scholar 

  37. Mao, S. J.; Zhao, B. W.; Wang, Z.; Gong, Y. T.; Lü, G. F.; Ma, X.; Yu, L. L.; Wang, Y. Tuning the catalytic performance for the semihydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts. Green Chem. 2019, 21, 4143–4151.

    Article  CAS  Google Scholar 

  38. Rajaram, J.; Narula, A. P. S.; Chawla, H. P. S.; Dev, S. Semihydrogenation of acetylenes: Modified lindlar catalyst. Tetrahedron 1983, 39, 2315–2322.

    Article  CAS  Google Scholar 

  39. García-Mota, M.; Gómez-Díaz, J.; Novell-Leruth, G.; Vargas-Fuentes, C.; Bellarosa, L.; Bridier, B.; Pérez-Ramírez, J.; López, N. A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theor. Chem. Acc. 2011, 128, 663–673.

    Article  Google Scholar 

  40. Theodorus, W. P. Process for the preparation of an aqueous colloidal precious metal suspension. WO Patent 2009096783, January 27, 2009.

  41. Witte, P. T.; Boland, S.; Kirby, F.; Van Maanen, R.; Bleeker, B. F.; De Winter, D. A. M.; Post, J. A.; Geus, J. W.; Berben, P. H. NanoSelect Pd catalysts: What causes the high selectivity of these supported colloidal catalysts in alkyne semi-hydrogenation. ChemCatChem 2013, 5, 582–587.

    Article  CAS  Google Scholar 

  42. Witte, P. T.; Berben, P. H.; Boland, S.; Boymans, E. H.; Vogt, D.; Geus, J. W.; Donkervoort, J. G. BASF NanoSelect™ technology: Innovative supported Pd- and Pt-based catalysts for selective hydrogenation reactions. Top. Catal. 2012, 55, 505–511.

    Article  CAS  Google Scholar 

  43. Vilé, G.; Almora-Barrios, N.; Mitchell, S.; López, N.; Pérez-Ramírez, J. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: Selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chem.—Eur. J. 2014, 20, 5926–5937.

    Article  Google Scholar 

  44. Kwon, S. G.; Krylova, G.; Sumer, A.; Schwartz, M. M.; Bunel, E. E.; Marshall, C. L.; Chattopadhyay, S.; Lee, B.; Jellinek, J.; Shevchenko, E. V. Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett. 2012, 12, 5382–5388.

    Article  CAS  Google Scholar 

  45. Wang, C. P.; Wang, Z.; Mao, S. J.; Chen, Z. R.; Wang, Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chin. J. Catal. 2022, 43, 928–955.

    Article  CAS  Google Scholar 

  46. Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 122, 14745–14747.

    Article  Google Scholar 

  47. Osswald, J.; Giedigkeit, R.; Jentoft, R. E.; Armbrüster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlögl, R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions. J. Catal. 2008, 258, 210–218.

    Article  CAS  Google Scholar 

  48. Cao, Y. Q.; Sui, Z. J.; Zhu, Y. A.; Zhou, X. G.; Chen, D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: Promotional effect of indium and composition-dependent performance. ACS Catal. 2017, 7, 7835–7846.

    Article  CAS  Google Scholar 

  49. González-Fernández, A.; Berenguer-Murcia, Á.; Cazorla-Amorós, D.; Cárdenas-Lizana, F. Zn-promoted selective gas-phase hydrogenation of tertiary and secondary C4 alkynols over supported Pd. ACS Appl. Mater. Interfaces 2020, 12, 28158–28168.

    Article  Google Scholar 

  50. Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd catalysts for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 8567–8581.

    Article  CAS  Google Scholar 

  51. Zhang, P. F.; Yuan, J. Y.; Fellinger, T. P.; Antonietti, M.; Li, H. R.; Wang, Y. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew. Chem., Int. Ed. 2013, 52, 6028–6032.

    Article  CAS  Google Scholar 

  52. Luneau, M.; Shirman, T.; Foucher, A. C.; Duanmu, K. N.; Verbart, D. M. A.; Sautet, P.; Stach, E. A.; Aizenberg, J.; Madix, R. J.; Friend, C. M. Achieving high selectivity for alkyne hydrogenation at high conversions with compositionally optimized PdAu nanoparticle catalysts in raspberry colloid-templated SiO2. ACS Catal. 2020, 10, 441–450.

    Article  CAS  Google Scholar 

  53. Fan, J. X.; Du, H. X.; Zhao, Y.; Wang, Q.; Liu, Y. N.; Li, D. Q.; Feng, J. T. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020, 10, 13560–13583.

    Article  CAS  Google Scholar 

  54. Gao, J.; Zhao, H. B.; Yang, X. F.; Koel, B. E.; Podkolzin, S. G. Geometric requirements for hydrocarbon catalytic sites on platinum surfaces. Angew. Chem., Int. Ed. 2014, 53, 3641–3644.

    Article  CAS  Google Scholar 

  55. Wang, Z.; Chen, Y. Z.; Mao, S. J.; Wu, K. J.; Zhang, K. C.; Li, Q. C.; Wang, Y. Chemical insight into the structure and formation of coke on PtSn alloy during propane dehydrogenation. Adv. Sustainable Syst. 2020, 4, 2000092.

    Article  CAS  Google Scholar 

  56. Dasgupta, A.; He, H. R.; Gong, R. S.; Shang, S. L.; Zimmerer, E. K.; Meyer, R. J.; Liu, Z. K.; Janik, M. J.; Rioux, R. M. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 2022, 14, 523–529.

    Article  CAS  Google Scholar 

  57. Vorobyeva, E.; Fako, E.; Chen, Z. P.; Collins, S. M.; Johnstone, D.; Midgley, P. A.; Hauert, R.; Safonova, O. V.; Vilé, G.; López, N. et al. Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 8724–8729.

    Article  CAS  Google Scholar 

  58. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

    Article  CAS  Google Scholar 

  59. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

    Article  CAS  Google Scholar 

  60. Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.

    Article  CAS  Google Scholar 

  61. Liu, J. L.; Uhlman, M. B.; Montemore, M. M.; Trimpalis, A.; Giannakakis, G.; Shan, J. J.; Cao, S. F.; Hannagan, R. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts. ACS Catal. 2019, 9, 8757–8765.

    Article  CAS  Google Scholar 

  62. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  63. Zhou, H. R.; Yang, X. F.; Wang, A. Q.; Miao, S.; Liu, X. Y.; Pan, X. L.; Su, Y.; Li, L.; Tan, Y.; Zhang, T. Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semihydrogenation. Chin. J. Catal. 2016, 37, 692–699.

    Article  CAS  Google Scholar 

  64. Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2010, 140, 13142–13146.

    Article  Google Scholar 

  65. Liu, K. L.; Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Zhang, Q. H.; Jing, W. T.; Ruan, P. P.; Gu, L.; Fu, G.; Zheng, N. F. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. CCS Chem. 2019, 1, 207–214.

    Article  CAS  Google Scholar 

  66. Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd-Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.

    Article  CAS  Google Scholar 

  67. Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semihydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

    Article  CAS  Google Scholar 

  68. Chen, Y. Z.; Wang, Z.; Mao, S. J.; Wang, Y. Rational design of hydrogenation catalysts using nitrogen-doped porous carbon. Chin. J. Catal. 2019, 40, 971–979.

    Article  CAS  Google Scholar 

  69. Deng, D. S.; Yang, Y.; Gong, Y. T.; Li, Y.; Xu, X.; Wang, Y. Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chem. 2013, 15, 2525–2531.

    Article  CAS  Google Scholar 

  70. Wei, Z. Z.; Yao, Z. H.; Zhou, Q.; Zhuang, G. L.; Zhong, X.; Deng, S. W.; Li, X. N.; Wang, J. G. Optimizing alkyne hydrogenation performance of Pd on carbon in situ decorated with oxygen-deficient TiO2 by integrating the reaction and diffusion. ACS Catal. 2019, 9, 10656–10667.

    Article  CAS  Google Scholar 

  71. Zou, S. H.; Lou, B. H.; Yang, K. R.; Yuan, W. T.; Zhu, C. Z.; Zhu, Y. H.; Du, Y. H.; Lu, L. F.; Liu, J. J.; Huang, W. X. et al. Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nat. Commun. 2021, 12, 5770.

    Article  CAS  Google Scholar 

  72. Zhang, Q. F.; Xu, Y. Q.; Wang, Q. T.; Huang, W. M.; Zhou, J.; Jiang, Y. S.; Xu, H.; Guo, L. L.; Zhang, P. Z.; Zhao, J. et al. Outstanding catalytic performance in the semi-hydrogenation of acetylene in a front-end process by establishing a “hydrogen deficient” phase. Chem. Commun. 2019, 55, 14910–14913.

    Article  CAS  Google Scholar 

  73. Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 61, 22522–22528.

    Article  Google Scholar 

  74. Wang, S.; Zhao, Z. J.; Chang, X.; Zhao, J. B.; Tian, H.; Yang, C. S.; Li, M. R.; Fu, Q.; Mu, R. T.; Gong, J. L. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem., Int. Ed. 2019, 58, 7668–7672.

    Article  CAS  Google Scholar 

  75. Yuan, Z. J.; Liu, L.; Ru, W.; Zhou, D. J.; Kuang, Y.; Feng, J. T.; Liu, B.; Sun, X. M. 3D printed hierarchical spinel monolithic catalysts for highly efficient semi-hydrogenation of acetylene. Nano Res. 2022, 15, 6010–6018.

    Article  CAS  Google Scholar 

  76. Azizi, Y.; Petit, C.; Pitchon, V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. J. Catal. 2008, 256, 338–344.

    Article  CAS  Google Scholar 

  77. Jia, J. F.; Haraki, K.; Kondo, J. N.; Domen, K.; Tamaru, K. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J. Phys. Chem. B 2000, 104, 11153–11156.

    Article  CAS  Google Scholar 

  78. Segura, Y.; López, N.; Pérez-Ramírez, J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple- versus double-bond activation. J. Catal. 2007, 247, 383–386.

    Article  CAS  Google Scholar 

  79. Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.

    Article  CAS  Google Scholar 

  80. Spanjers, C. S.; Held, J. T.; Jones, M. J.; Stanley, D. D.; Sim, R. S.; Janik, M. J.; Rioux, R. M. Zinc inclusion to heterogeneous nickel catalysts reduces oligomerization during the semi-hydrogenation of acetylene. J. Catal. 2014, 316, 164–173.

    Article  CAS  Google Scholar 

  81. Rao, D. M.; Sun, T.; Yang, Y. S.; Yin, P.; Pu, M.; Yan, H.; Wei, M. Theoretical study on the reaction mechanism and selectivity of acetylene semi-hydrogenation on Ni-Sn intermetallic catalysts. Phys. Chem. Chem. Phys. 2019, 27, 1384–1392.

    Article  Google Scholar 

  82. Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z. J.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

    Article  CAS  Google Scholar 

  83. Wang, L.; Li, F. X.; Chen, Y. J.; Chen, J. X. Selective hydrogenation of acetylene on SiO2-supported Ni-Ga alloy and intermetallic compound. J. Energy Chem. 2019, 29, 40–49.

    Article  Google Scholar 

  84. Liu, Y. X.; Liu, X. W.; Feng, Q. C.; He, D. S.; Zhang, L. B.; Lian, C.; Shen, R. A.; Zhao, G. F.; Ji, Y. J.; Wang, D. S. et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation of alkynes. Adv. Mater. 2016, 28, 4747–4754.

    Article  CAS  Google Scholar 

  85. Nikolaev, S. A.; Smirnov, V. V.; Vasil’kov, A. Y.; Podshibikhin, V. L. Synergism of the catalytic effect of nanosized gold-nickel catalysts in the reaction of selective acetylene hydrogenation to ethylene. Kinet. Catal. 2010, 51, 375–379.

    Article  CAS  Google Scholar 

  86. Yang, B.; Burch, R.; Hardacre, C.; Headdock, G.; Hu, P. Origin of the increase of activity and selectivity of nickel doped by Au, Ag, and Cu for acetylene hydrogenation. ACS Catal. 2012, 2, 1027–1032.

    Article  CAS  Google Scholar 

  87. Fu, B. A.; McCue, A. J.; Liu, Y. N.; Weng, S. X.; Song, Y. F.; He, Y. F.; Feng, J. T.; Li, D. Q. Highly selective and stable isolated nonnoble metal atom catalysts for selective hydrogenation of acetylene. ACS Catal. 2022, 12, 607–615.

    Article  CAS  Google Scholar 

  88. Shi, X. X.; Lin, Y.; Huang, L.; Sun, Z. H.; Yang, Y.; Zhou, X. H.; Vovk, E.; Liu, X. Y.; Huang, X. H.; Sun, M. et al. Copper catalysts in semihydrogenation of acetylene: From single atoms to nanoparticles. ACS Catal. 2020, 10, 3495–3504.

    Article  CAS  Google Scholar 

  89. Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

    Article  Google Scholar 

  90. Huang, F.; Peng, M.; Chen, Y. L.; Gao, Z. R.; Cai, X. B.; Xie, J. L.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Insight into the activity of atomically dispersed Cu catalysts for semihydrogenation of acetylene: Impact of coordination environments. ACS Catal. 2022, 12, 48–57.

    Article  CAS  Google Scholar 

  91. Fu, F. Z.; Liu, Y. N.; Li, Y. W.; Fu, B. A.; Zheng, L. R.; Feng, J. T.; Li, D. Q. Interfacial bifunctional effect promoted non-noble Cu/FeyMgOx catalysts for selective hydrogenation of acetylene. ACS Catal. 2021, 11, 11117–11128.

    Article  CAS  Google Scholar 

  92. Zhang, R. G.; Zhao, B.; He, L. L.; Wang, A. J.; Wang, B. J. Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C2H2 to C2H4: The effect of the promoter on selectivity and activity. Phys. Chem. Chem. Phys. 2018, 20, 17487–17496.

    Article  CAS  Google Scholar 

  93. Armbrüster, M.; Kovnir, K.; Friedrich, M.; Teschner, D.; Wowsnick, G.; Hahne, M.; Gille, P.; Szentmiklósi, L.; Feuerbacher, M.; Heggen, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 2012, 11, 690–693.

    Article  Google Scholar 

  94. Kojima, T.; Kameoka, S.; Tsai, A. P. Heusler alloys: A group of novel catalysts. ACS Omega 2017, 2, 147–153.

    Article  CAS  Google Scholar 

  95. Kojima, T.; Kameoka, S.; Fujii, S.; Ueda, S.; Tsai, A. P. Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: A new potential for old materials. Sci. Adv. 2018, 4, eaat6063.

    Article  CAS  Google Scholar 

  96. Greeley, J.; Mavrikakis, M. A first-principles study of surface and subsurface H on and in Ni (111): Diffusional properties and coverage-dependent behavior. Surf. Sci. 2003, 540, 215–229.

    Article  CAS  Google Scholar 

  97. Ceyer, S. T. The unique chemistry of hydrogen beneath the surface: Catalytic hydrogenation of hydrocarbons. Acc. Chem. Res. 2001, 34, 737–744.

    Article  CAS  Google Scholar 

  98. Daley, S. P.; Utz, A. L.; Trautman, T. R.; Ceyer, S. T. Ethylene hydrogenation on Ni (111) by bulk hydrogen. J. Am. Chem. Soc. 1994, 116, 6001–6002.

    Article  CAS  Google Scholar 

  99. Haug, K. L.; Bürgi, T.; Trautman, T. R.; Ceyer, S. T. Distinctive reactivities of surface-bound H and bulk H for the catalytic hydrogenation of acetylene. J. Am. Chem. Soc. 1998, 120, 8885–8886.

    Article  CAS  Google Scholar 

  100. Michaelides, A.; Hu, P.; Alavi, A. Physical origin of the high reactivity of subsurface hydrogen in catalytic hydrogenation. J. Chem. Phys. 1999, 111, 1343–1345.

    Article  CAS  Google Scholar 

  101. Henkelman, G.; Arnaldsson, A.; Jónsson, H. Theoretical calculations of CH4 and H2 associative desorption from Ni (111): Could subsurface hydrogen play an important role? J. Chem. Phys. 2006, 124, 044706.

    Article  Google Scholar 

  102. Ledentu, V.; Dong, W.; Sautet, P. Heterogeneous catalysis through subsurface sites. J. Am. Chem. Soc. 2000, 122, 1796–1801.

    Article  CAS  Google Scholar 

  103. Ohno, S.; Wilde, M.; Mukai, K.; Yoshinobu, J.; Fukutani, K. Mechanism of olefin hydrogenation catalysis driven by palladium-dissolved hydrogen. J. Phys. Chem. C 2016, 120, 11481–11489.

    Article  CAS  Google Scholar 

  104. Aleksandrov, H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 53, 13371–13375.

    Article  CAS  Google Scholar 

  105. Khan, N. A.; Shaikhutdinov, S.; Freund, H. J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal. Lett. 2006, 108, 159–164.

    Article  CAS  Google Scholar 

  106. Guo, Q.; Chen, R. T.; Guo, J. P.; Qin, C.; Xiong, Z. T.; Yan, H. X.; Gao, W. B.; Pei, Q. J.; Wu, A. A.; Chen, P. Enabling semihydrogenation of alkynes to alkenes by using a calcium palladium complex hydride. J. Am. Chem. Soc. 2021, 143, 20891–20897.

    Article  CAS  Google Scholar 

  107. Zhang, J.; Sui, Z. J.; Zhu, Y. A.; Chen, D.; Zhou, X. G.; Yuan, W. K. Composition of the green oil in hydrogenation of acetylene over a commercial Pd-Ag/Al2O3 catalyst. Chem. Eng. Technol. 2016, 39, 865–873.

    Article  CAS  Google Scholar 

  108. Liu, Y. N.; Fu, F. Z.; McCue, A.; Jones, W.; Rao, D. M.; Feng, J. T.; He, Y. F.; Li, D. Q. Adsorbate-induced structural evolution of Pd catalyst for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 15048–15059.

    Article  CAS  Google Scholar 

  109. Teschner, D.; Vass, E.; Hävecker, M.; Zafeiratos, S.; Schnörch, P.; Sauer, H.; Knop-Gericke, A.; Schlögl, R.; Chamam, M.; Wootsch, A. et al. Alkyne hydrogenation over Pd catalysts: A new paradigm. J. Catal. 2006, 242, 26–37.

    Article  CAS  Google Scholar 

  110. Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

    Article  CAS  Google Scholar 

  111. Lu, C. Y.; Wang, Y.; Zhang, R. G.; Wang, B. J.; Wang, A. J. Preparation of an unsupported copper-based catalyst for selective hydrogenation of acetylene from Cu2O nanocubes. ACS Appl. Mater. Interfaces 2020, 12, 46027–46036.

    Article  CAS  Google Scholar 

  112. Lu, C. Y.; Zeng, A. N.; Wang, Y.; Wang, A. J. Copper-based catalysts for selective hydrogenation of acetylene derived from Cu(OH)2. ACS Omega 2021, 6, 3363–3371.

    Article  CAS  Google Scholar 

  113. Lu, C. Y.; Zeng, A. N.; Wang, Y.; Wang, A. J. High-performance catalysts derived from cupric subcarbonate for selective hydrogenation of acetylene in an ethylene stream. Eur. J. Inorg. Chem. 2021, 2021, 997–1004.

    Article  CAS  Google Scholar 

  114. Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew. Chem., Int. Ed. 2000, 47, 9299–9302.

    Article  Google Scholar 

  115. Piqué, O.; Koleva, I. Z.; Viñes, F.; Aleksandrov, H. A.; Vayssilov, G. N.; Illas, F. Subsurface carbon: A general feature of noble metals. Angew. Chem., Int. Ed. 2019, 58, 1744–1748.

    Article  Google Scholar 

  116. Teschner, D.; Borsodi, J.; Kis, Z.; Szentmiklósi, L.; Révay, Z.; Knop-Gericke, A.; Schlögl, R.; Torres, D.; Sautet, P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. J. Phys. Chem. C 2010, 114, 2293–2299.

    Article  CAS  Google Scholar 

  117. Niu, Y. M.; Huang, X.; Wang, Y. Z.; Xu, M.; Chen, J. N.; Xu, S. L.; Willinger, M. G.; Zhang, W.; Wei, M.; Zhang, B. S. Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne. Nat. Commun. 2020, 11, 3324.

    Article  CAS  Google Scholar 

  118. Garcia-Ortiz, A.; Vidal, J. D.; Iborra, S.; Climent, M. J.; Cored, J.; Ruano, D.; Pérez-Dieste, V.; Concepción, P.; Corma, A. Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. J. Catal. 2020, 389, 706–713.

    Article  CAS  Google Scholar 

  119. Chan, C. W. A.; Xie, Y. L.; Cailuo, N.; Yu, K. M. K.; Cookson, J.; Bishop, P.; Tsang, S. C. New environmentally friendly catalysts containing Pd-interstitial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase. Chem. Commun. 2011, 47, 7971–7973.

    Article  CAS  Google Scholar 

  120. Wang, S. H.; Uwakwe, K.; Yu, L.; Ye, J. Y.; Zhu, Y. Z.; Hu, J. T.; Chen, R. X.; Zhang, Z.; Zhou, Z. Y.; Li, J. F. et al. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Nat. Commun. 2021, 12, 7072.

    Article  CAS  Google Scholar 

  121. Zhang, L.; Chen, Z.; Liu, Z. P.; Bu, J.; Ma, W. X.; Yan, C.; Bai, R.; Lin, J.; Zhang, Q. Y.; Liu, J. Z. et al. Efficient electrocatalytic acetylene semihydrogenation by electron-rich metal sites in N-heterocyclic carbene metal complexes. Nat. Commun. 2021, 12, 6574.

    Article  CAS  Google Scholar 

  122. Bu, J.; Liu, Z. P.; Ma, W. X.; Zhang, L.; Wang, T.; Zhang, H. P.; Zhang, Q. Y.; Feng, X. L.; Zhang, J. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 2021, 4, 557–564.

    Article  CAS  Google Scholar 

  123. Shi, R.; Wang, Z. P.; Zhao, Y. X.; Waterhouse, G. I. N.; Li, Z. H.; Zhang, B. K.; Sun, Z. M.; Xia, C.; Wang, H. T.; Zhang, T. R. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 2021, 4, 565–574.

    Article  CAS  Google Scholar 

  124. Wu, Y. M.; Liu, C. B.; Wang, C. H.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 2021, 12, 3881.

    Article  CAS  Google Scholar 

  125. Lin, B. Q.; Wu, X.; Xie, L.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Li, J.; Gan, L. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew. Chem., Int. Ed. 2020, 59, 20348–20352.

    Article  CAS  Google Scholar 

  126. Li, X. T.; Chen, L.; Wei, G. F.; Shang, C.; Liu, Z. P. Sharp increase in catalytic selectivity in acetylene semihydrogenation on Pd achieved by a machine learning simulation-guided experiment. ACS Catal. 2020, 10, 9694–9705.

    Article  CAS  Google Scholar 

  127. Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. In situ surface structures of PdAg catalyst and their influence on acetylene semihydrogenation revealed by machine learning and experiment. J. Am. Chem. Soc. 2021, 143, 6281–6292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key Research and Development Program of China (No. 2021YFB3801600), the National Natural Science Foundation of China (Nos. 21872121 and 21908189), and the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Nos. 2022C01218 and 2022C01151) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Luo, Q., Mao, S. et al. Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts. Nano Res. 15, 10044–10062 (2022). https://doi.org/10.1007/s12274-022-4590-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4590-1

Keywords

Navigation