Skip to main content
Log in

Graphene-integrated waveguides: Properties, preparation, and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene-integrated waveguides (GIWGs) have shown immense potential for applications in next-generation datacom technology due to graphene’s compactness and its functional complementarity with traditional optical waveguides. However, the fabrication techniques of GIWGs lack scalability for commercial applications. Here we discuss the recent developments of GIWGs in two-dimensional optoelectronics by focusing on their properties, wave—matter interaction mechanisms, and fabrication techniques. We highlight representative advances on the advantages and potential applications of GIWGs in telecom networks. Finally, we outline major challenges and development trends to bridge the gap between proof-of-concept demonstrations and practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Planar photonics with metasurfaces. Science 2013, 339, 1232009.

    Article  CAS  Google Scholar 

  2. Liu, Y. M.; Zhang, X. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett. 2013, 103, 141101.

    Article  CAS  Google Scholar 

  3. Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  CAS  Google Scholar 

  4. Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

    Article  CAS  Google Scholar 

  5. Wang, X. M.; Cheng, Z. Z.; Xu, K.; Tsang, H. K.; Xu, J. B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891.

    Article  CAS  Google Scholar 

  6. Schuler, S.; Muench, J. E.; Ruocco, A.; Balci, O.; Van Thourhout, D.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I. et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 3733.

    Article  CAS  Google Scholar 

  7. Muench, J. E.; Ruocco, A.; Giambra, M. A.; Miseikis, V.; Zhang, D. K.; Wang, J. J.; Watson, H. F. Y.; Park, G. C.; Akhavan, S.; Sorianello, V. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 2019, 19, 7632–7644.

    Article  CAS  Google Scholar 

  8. Goykhman, I.; Sassi, U.; Desiatov, B.; Mazurski, N.; Milana, S.; De Fazio, D.; Eiden, A.; Khurgin, J.; Shappir, J.; Levy, U. et al. On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 2016, 16, 3005–3013.

    Article  CAS  Google Scholar 

  9. Guo, J. S.; Li, J.; Liu, C. Y.; Yin, Y. L.; Wang, W. H.; Ni, Z. H.; Fu, Z. L.; Yu, H.; Xu, Y.; Shi, Y. C. et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 µm. Light:Sci. Appl. 2020, 9, 29.

    Article  CAS  Google Scholar 

  10. Schuler, S.; Schall, D.; Neumaier, D.; Schwarz, B.; Watanabe, K.; Taniguchi, T.; Mueller, T. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 2018, 5, 4758–4763.

    Article  CAS  Google Scholar 

  11. Ma, Z. Z.; Kikunaga, K.; Wang, H.; Sun, S.; Amin, R.; Maiti, R.; Tahersima, M. H.; Dalir, H.; Miscuglio, M.; Sorger, V. J. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 2020, 7, 932–940.

    Article  CAS  Google Scholar 

  12. Ma, P.; Salamin, Y.; Baeuerle, B.; Josten, A.; Heni, W.; Emboras, A.; Leuthold, J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154–161.

    Article  CAS  Google Scholar 

  13. Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater. Today 2012, 15, 86–97.

    Article  CAS  Google Scholar 

  14. Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.

    Article  CAS  Google Scholar 

  15. Agarwal, H.; Terrés, B.; Orsini, L.; Montanaro, A.; Sorianello, V.; Pantouvaki, M.; Watanabe, K.; Taniguchi, T.; Van Thourhout, D.; Romagnoli, M. et al. 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators. Nat. Commun. 2021, 12, 1070.

    Article  CAS  Google Scholar 

  16. Marconi, S.; Giambra, M. A.; Montanaro, A.; Miseikis, V.; Soresi, S.; Tirelli, S.; Galli, P.; Buchali, F.; Templ, W.; Coletti, C. et al. Photo thermal effect graphene detector featuring 105 Gbit·s−1 NRZ and 120 Gbit·s−1 pam4 direct detection. Nat. Commun. 2021, 12, 806.

    Article  CAS  Google Scholar 

  17. Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Mobility variations in mono- and multi-layer graphene films. Appl. Phys. Express 2009, 2, 025003.

    Article  CAS  Google Scholar 

  18. Cheng, J. L.; Vermeulen, N.; Sipe, J. E. Third order optical nonlinearity of graphene. New J. Phys. 2014, 16, 053014.

    Article  CAS  Google Scholar 

  19. Liu, K.; Zhang, J. F.; Xu, W.; Zhu, Z. H.; Guo, C. C.; Li, X. J.; Qin, S. Q. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide. Sci. Rep. 2015, 5, 16734.

    Article  CAS  Google Scholar 

  20. Ishizawa, A.; Kou, R.; Goto, T.; Tsuchizawa, T.; Matsuda, N.; Hitachi, K.; Nishikawa, T.; Yamada, K.; Sogawa, T.; Gotoh, H. Optical nonlinearity enhancement with graphene-decorated silicon waveguides. Sci. Rep. 2017, 7, 45520.

    Article  CAS  Google Scholar 

  21. Hu, X.; Long, Y.; Ji, M. X.; Wang, A. D.; Zhu, L.; Ruan, Z. S.; Wang, Y.; Wang, J. Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt. Express 2016, 24, 7168–7177.

    Article  CAS  Google Scholar 

  22. Yao, B. C.; Liu, Y.; Huang, S. W.; Choi, C.; Xie, Z. D.; Flores, J. F.; Wu, Y.; Yu, M. B.; Kwong, D. L.; Huang, Y. et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat. Photonics 2018, 12, 22–28.

    Article  CAS  Google Scholar 

  23. Gu, T.; Petrone, N.; McMillan, J. F.; Van Der Zande, A.; Yu, M.; Lo, G. Q.; Kwong, D. L.; Hone, J.; Wong, C. W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 2012, 6, 554–559.

    Article  CAS  Google Scholar 

  24. Zhang, Y. N.; Wu, J. Y.; Yang, Y. Y.; Qu, Y.; Jia, L. N.; Moein, T.; Jia, B. H.; Moss, D. J. Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Appl. Mater. Interfaces 2020, 12, 33094–33103.

    Article  CAS  Google Scholar 

  25. Zapata, J. D.; Steinberg, D.; Saito, L. A. M.; De Oliveira, R. E. P.; Cárdenas, A. M.; De Souza, E. A. T. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 2016, 6, 20644.

    Article  CAS  Google Scholar 

  26. Deng, M.; Liao, Z. C.; Chen, Y. K.; Yang, N. N.; Yan, X.; Zhang, C.; Dai, N. L.; Wang, Y. On-chip ultrafast pulse generation based on graphene-silicon hybrid waveguides. Photonics Res. 2021, 9, 1660–1666.

    Article  Google Scholar 

  27. Hua, K.; Wang, D. N. Coupling scheme for graphene saturable absorber in a linear cavity mode-locked fiber laser. Opt. Lett. 2021, 46, 4362–4365.

    Article  Google Scholar 

  28. Lin, Y. H.; Yang, C. Y.; Liou, J. H.; Yu, C. P.; Lin, G. R. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express 2013, 21, 16763–16776.

    Article  CAS  Google Scholar 

  29. Bao, Q. L.; Zhang, H.; Ni, Z. H.; Wang, Y.; Polavarapu, L.; Shen, Z. X.; Xu, Q. H.; Tang, D. Y.; Loh, K. P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 2011, 4, 297–307.

    Article  CAS  Google Scholar 

  30. Chen, T.; Chen, H. F.; Wang, D. N. Graphene saturable absorber based on slightly tapered fiber with inner air-cavity. J. Lightwave Technol. 2015, 33, 2332–2336.

    Article  CAS  Google Scholar 

  31. Ren, W. C.; Cheng, H. M. The global growth of graphene. Nat. Nanotechnol. 2014, 9, 726–730.

    Article  CAS  Google Scholar 

  32. Hofer, C.; Skákalová, V.; Görlich, T.; Tripathi, M.; Mittelberger, A.; Mangler, C.; Monazam, M. R. A.; Susi, T.; Kotakoski, J.; Meyer, J. C. Direct imaging of light-element impurities in graphene reveals triple-coordinated oxygen. Nat. Commun. 2019, 10, 4570.

    Article  CAS  Google Scholar 

  33. Bo, Z.; Shuai, X. R.; Mao, S.; Yang, H. C.; Qian, J. J.; Chen, J. H.; Yan, J. H.; Cen, K. F. Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 2014, 4, 4684.

    Article  CAS  Google Scholar 

  34. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

    Article  CAS  Google Scholar 

  35. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  CAS  Google Scholar 

  36. Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

    Article  CAS  Google Scholar 

  37. Wang, J. Q.; Cheng, Z. Z.; Li, X. J. Progress on waveguide-integrated graphene optoelectronics. Adv. Condens. Matter Phys. 2018, 2018, 9324528.

    Article  CAS  Google Scholar 

  38. Meng, Y.; Chen, Y. Z.; Lu, L. H.; Ding, Y. M.; Cusano, A.; Fan, J. A.; Hu, Q. M.; Wang, K. Y.; Xie, Z. W.; Liu, Z. T. et al. Optical meta-waveguides for integrated photonics and beyond. Light:Sci. Appl. 2021, 10, 235.

    Article  CAS  Google Scholar 

  39. Kumar, V. Linear and nonlinear optical properties of graphene: A review. J. Electron. Mater. 2021, 50, 3773–3799.

    CAS  Google Scholar 

  40. Wang, J.; Hu, X. Recent advances in graphene-assisted nonlinear optical signal processing. J. Nanotechnol. 2016, 2016, 7031913.

    Article  Google Scholar 

  41. Xu, X. D.; Gabor, N. M.; Alden, J. S.; Van Der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562–566.

    Article  CAS  Google Scholar 

  42. Gabor, N. M.; Song, J. C. W.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Hot carrier-assisted intrinsic photoresponse in graphene. Science 2011, 334, 648–652.

    Article  CAS  Google Scholar 

  43. Wei, P.; Bao, W. Z.; Pu, Y.; Lau, C. N.; Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 2009, 102, 166808.

    Article  CAS  Google Scholar 

  44. Cutler, M.; Mott, N. F. Observation of Anderson localization in an electron gas. Phys. Rev. 1969, 181, 1336–1340.

    Article  CAS  Google Scholar 

  45. Liu, Z. B.; Zhang, X. L.; Yan, X. Q.; Chen, Y. S.; Tian, J. G. Nonlinear optical properties of graphene-based materials. Chin. Sci. Bull. 2012, 57, 2971–2982.

    Article  CAS  Google Scholar 

  46. Dremetsika, E.; Dlubak, B.; Gorza, S. P.; Ciret, C.; Martin, M. B.; Hofmann, S.; Seneor, P.; Dolfi, D.; Massar, S.; Emplit, P. et al. Measuring the nonlinear refractive index of graphene using the optical Kerr effect method. Opt. Lett. 2016, 41, 3281–3284.

    Article  CAS  Google Scholar 

  47. Bao, Q. L.; Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694.

    Article  CAS  Google Scholar 

  48. Hong, S. Y.; Dadap, J. I.; Petrone, N.; Yeh, P. C.; Hone, J.; Osgood, R. M. Optical third-harmonic generation in graphene. Phys. Rev. X 2013, 3, 021014.

    Google Scholar 

  49. Kumar, N.; Kumar, J.; Gerstenkorn, C.; Wang, R.; Chiu, H. Y.; Smirl, A. L.; Zhao, H. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 2013, 87, 121406(R).

    Article  CAS  Google Scholar 

  50. Säynätjoki, A.; Karvonen, L.; Riikonen, J.; Kim, W.; Mehravar, S.; Norwood, R. A.; Peyghambarian, N.; Lipsanen, H.; Kieu, K. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 2013, 7, 8441–8446.

    Article  CAS  Google Scholar 

  51. Luo, Z. Q.; Zhou, M.; Wu, D. D.; Ye, C. C.; Weng, J.; Dong, J.; Xu, H. Y.; Cai, Z. P.; Chen, L. J. Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers. J. Lightwave Technol. 2011, 29, 2732–2739.

    Article  Google Scholar 

  52. Yang, H. Z.; Feng, X. B.; Wang, Q.; Huang, H.; Chen, W.; Wee, A. T. S.; Ji, W. Giant two-photon absorption in bilayer graphene. Nano Lett. 2011, 11, 2622–2627.

    Article  CAS  Google Scholar 

  53. Li, H.; Anugrah, Y.; Koester, S. J.; Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 2012, 101, 111110.

    Article  CAS  Google Scholar 

  54. Ono, M.; Hata, M.; Tsunekawa, M.; Nozaki, K.; Sumikura, H.; Chiba, H.; Notomi, M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics 2020, 14, 37–43.

    Article  CAS  Google Scholar 

  55. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  56. Song, Y. X.; Zhang, C. R.; Li, B.; Ding, G. Q.; Jiang, D.; Wang, H. M.; Xie, X. M. Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene. Nanoscale Res. Lett. 2014, 9, 367.

    Article  CAS  Google Scholar 

  57. Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  58. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  59. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  60. Kim, K.; Yoon, J. C.; Kim, J.; Kim, J. H.; Lee, S. W.; Yoon, A.; Lee, Z. Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene. Appl. Microsc. 2019, 49, 3.

    Article  Google Scholar 

  61. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  CAS  Google Scholar 

  62. Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887.

    Article  CAS  Google Scholar 

  63. Schuler, S.; Schall, D.; Neumaier, D.; Dobusch, L.; Bethge, O.; Schwarz, B.; Krall, M.; Mueller, T. Controlled generation of a p—n junction in a waveguide integrated graphene photodetector. Nano Lett. 2016, 16, 7107–7112.

    Article  CAS  Google Scholar 

  64. Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896.

    Article  CAS  Google Scholar 

  65. Li, W.; Chen, B. G.; Meng, C.; Fang, W.; Xiao, Y.; Li, X. Y.; Hu, Z. F.; Xu, Y. X.; Tong, L. M.; Wang, H. Q. et al. Ultrafast all-optical graphene modulator. Nano Lett. 2014, 14, 955–959.

    Article  CAS  Google Scholar 

  66. Chen, B. G.; Meng, C.; Yang, Z. Y.; Li, W.; Lin, S. S.; Gu, T. Y.; Guo, X.; Wang, D. L.; Yu, S. L.; Wong, C. W. et al. Graphene coated ZnO nanowire optical waveguides. Opt. Express 2014, 22, 24276–24285.

    Article  CAS  Google Scholar 

  67. Kaur, A.; Kaur, J.; Singh, R. C. Green exfoliation of graphene nanosheets based on freezing induced volumetric expansion of carbonated water. Mater. Res. Express 2018, 5, 085601.

    Article  CAS  Google Scholar 

  68. Yi, M.; Shen, Z. G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715.

    Article  CAS  Google Scholar 

  69. Wei, Y.; Sun, Z. Y. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr. Opin. Colloid Interface Sci. 2015, 20, 311–321.

    Article  CAS  Google Scholar 

  70. Tian, Z. S.; Xu, C. X.; Li, J. T.; Zhu, G. Y.; Wu, J.; Shi, Z. L.; Wang, Y. Y. A facile preparation route for highly conductive borate cross-linked reduced graphene oxide paper. New J. Chem. 2015, 39, 6907–6913.

    Article  CAS  Google Scholar 

  71. Abdolhosseinzadeh, S.; Asgharzadeh, H.; Kim, H. S. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160.

    Article  CAS  Google Scholar 

  72. Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

    Article  CAS  Google Scholar 

  73. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  CAS  Google Scholar 

  74. Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    Article  CAS  Google Scholar 

  75. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir—Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  CAS  Google Scholar 

  76. Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472.

    Article  CAS  Google Scholar 

  77. Cote, L. J.; Kim, F.; Huang, J. X. Langmuir—Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131, 1043–1049.

    Article  CAS  Google Scholar 

  78. Lu, J. L.; Li, Y. H.; Li, S. L.; Jiang, S. P. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci. Rep. 2016, 6, 21530.

    Article  CAS  Google Scholar 

  79. Wu, J. Y.; Yang, Y. Y.; Qu, Y.; Xu, X. Y.; Liang, Y.; Chu, S. T.; Little, B. E.; Morandotti, R.; Jia, B. H.; Moss, D. J. Graphene oxide waveguide and micro-ring resonator polarizers. Laser Photonics Rev. 2019, 13, 1900056.

    Article  CAS  Google Scholar 

  80. Kim, H.; Cho, J.; Jang, S. Y.; Song, Y. W. Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett. 2011, 98, 021104.

    Article  CAS  Google Scholar 

  81. Song, Y. W.; Jang, S. Y.; Han, W. S.; Bae, M. K. Graphene modelockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 2010, 96, 051122.

    Article  CAS  Google Scholar 

  82. Yao, B. C.; Yu, C. B.; Wu, Y.; Huang, S. W.; Wu, H.; Gong, Y.; Chen, Y. F.; Li, Y. R.; Wong, C. W.; Fan, X. D. et al. Graphene-enhanced brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett. 2017, 17, 4996–5002.

    Article  CAS  Google Scholar 

  83. Choi, S. Y.; Cho, D. K.; Song, Y. W.; Oh, K.; Kim, K.; Rotermund, F.; Yeom, D. I. Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking. Opt. Express 2012, 20, 5652–5657.

    Article  CAS  Google Scholar 

  84. Liu, Z. B.; He, X. Y.; Wang, D. N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Opt. Lett. 2011, 36, 3024–3026.

    Article  CAS  Google Scholar 

  85. Ruan, Y. L.; Ding, L. Y.; Duan, J. J.; Ebendorff-Heidepriem, H.; Monro, T. M. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications. Sci. Rep. 2016, 6, 21682.

    Article  CAS  Google Scholar 

  86. Meng, C.; Yu, S. L.; Wang, H. Q.; Cao, Y.; Tong, L. M.; Liu, W. T.; Shen, Y. R. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light:Sci. Appl. 2015, 4, e348.

    Article  CAS  Google Scholar 

  87. Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.

    Article  CAS  Google Scholar 

  88. Guo, Y. Y.; Han, B.; Du, J. T.; Cao, S. S.; Gao, H.; An, N.; Li, Y. W.; An, S. J.; Ran, Z. L.; Lin, Y. et al. Kilometers long graphene-coated optical fibers for fast thermal sensing. Research 2021, 2021, 5612850.

    Article  CAS  Google Scholar 

  89. Yu, Q.; Jiang, J. C.; Jiang, L. Y.; Yang, Q. Q.; Yan, N. Advances in green synthesis and applications of graphene. Nano Res. 2021, 14, 3724–3743.

    Article  CAS  Google Scholar 

  90. Deng, B.; Liu, Z. F.; Peng, H. L. Toward mass production of CVD graphene films. Adv. Mater. 2019, 31, 1800996.

    Article  CAS  Google Scholar 

  91. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z. P.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564–589.

    Article  CAS  Google Scholar 

  92. Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

    Article  Google Scholar 

  93. Jabra, Z. B.; Berbezier, I.; Michon, A.; Koudia, M.; Assaf, E.; Ronda, A.; Castrucci, P.; De Crescenzi, M.; Vach, H.; Abel, M. Hydrogen-mediated CVD epitaxy of graphene on SiC: Implications for microelectronic applications. ACS Appl. Nano Mater. 2021, 4, 4462–4473.

    Article  CAS  Google Scholar 

  94. Peng, K. J.; Lin, Y. H.; Wu, C. L.; Lin, S. F.; Yang, C. Y.; Lin, S. M.; Tsai, D. P.; Lin, G. R. Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers. Sci. Rep. 2015, 5, 13689.

    Article  Google Scholar 

  95. Verguts, K.; Vermeulen, B.; Vrancken, N.; Schouteden, K.; Van Haesendonck, C.; Huyghebaert, C.; Heyns, M.; De Gendt, S.; Brems, S. Epitaxial Al2O3 (0001)/Cu (111) template development for CVD graphene growth. J. Phys. Chem. C 2016, 120, 297–304.

    Article  CAS  Google Scholar 

  96. Leidinger, P.; Kraus, J.; Günther, S. Predicting graphene growth on Cu: Universal kinetic growth model and its experimental verification. ACS Nano 2021, 15, 12201–12212.

    Article  CAS  Google Scholar 

  97. Huang, M.; Biswal, M.; Park, H. J.; Jin, S.; Qu, D. S.; Hong, S.; Zhu, Z. L.; Qiu, L.; Luo, D.; Liu, X. C. et al. Highly oriented monolayer graphene grown on a Cu/Ni (111) alloy foil. ACS Nano 2018, 12, 6117–6127.

    Article  CAS  Google Scholar 

  98. Zhou, H. L.; Yu, W. J.; Liu, L. X.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

    Article  CAS  Google Scholar 

  99. Shin, D.; Park, J. B.; Kim, Y. J.; Kim, S. J.; Kang, J. H.; Lee, B.; Cho, S. P.; Hong, B. H.; Novoselov, K. S. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat. Commun. 2015, 6, 6068.

    Article  Google Scholar 

  100. Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

    Article  CAS  Google Scholar 

  101. Deng, B.; Hsu, P. C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206–4213.

    Article  CAS  Google Scholar 

  102. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  103. Liu, M.; Yin, X. B.; Zhang, X. Double-layer graphene optical modulator. Nano Lett. 2012, 12, 1482–1485.

    Article  CAS  Google Scholar 

  104. Qiu, C. Y.; Gao, W. L.; Vajtai, R.; Ajayan, P. M.; Kono, J.; Xu, Q. F. Efficient modulation of 1.55 µm radiation with gated graphene on a silicon microring resonator. Nano Lett. 2014, 14, 6811–6815.

    Article  CAS  Google Scholar 

  105. Phare, C. T.; Lee, Y. H. D.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514.

    Article  CAS  Google Scholar 

  106. Lin, H. T.; Song, Y.; Huang, Y. Z.; Kita, D.; Deckoff-Jones, S.; Wang, K. Q.; Li, L.; Li, J. Y.; Zheng, H. Y.; Luo, Z. Q. et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics 2017, 11, 798–805.

    Article  CAS  Google Scholar 

  107. Bao, Q. L.; Zhang, H.; Wang, B.; Ni, Z. H.; Lim, C. H. Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415.

    Article  CAS  Google Scholar 

  108. He, X. Y.; Liu, Z. B.; Wang, D. N. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating. Opt. Lett. 2012, 37, 2394–2396.

    Article  CAS  Google Scholar 

  109. Lee, E. J.; Choi, S. Y.; Jeong, H.; Park, N. H.; Yim, W.; Kim, M. H.; Park, J. K.; Son, S.; Bae, S.; Kim, S. J. et al. Active control of all-fibre graphene devices with electrical gating. Nat. Commun. 2015, 6, 6851.

    Article  CAS  Google Scholar 

  110. Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

    Article  CAS  Google Scholar 

  111. Chen, K.; Zhou, X.; Cheng, X.; Qiao, R. X.; Cheng, Y.; Liu, C.; Xie, Y. D.; Yu, W. T.; Yao, F. R.; Sun, Z. P. et al. Graphene photonic crystal fibre with strong and tunable light—matter interaction. Nat. Photonics 2019, 13, 754–759.

    Article  CAS  Google Scholar 

  112. Zuo, Y. G.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R. X.; Liang, J.; Zhou, X.; Wang, J. H.; Wu, M. H.; Zhao, Y. et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol 2020, 15, 987–991.

    Article  CAS  Google Scholar 

  113. Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K. E.; Kim, P.; Yoo, I.; Chung, H. J.; Kim, K. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 2012, 336, 1140–1143.

    Article  CAS  Google Scholar 

  114. An, Y. B.; Behnam, A.; Pop, E.; Ural, A. Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 2013, 102, 013110.

    Article  CAS  Google Scholar 

  115. Sipe, J. E.; Becher, J. Surface-plasmon-assisted photoemission. J. Opt. Soc. Am. 1981, 71, 1286–1288.

    Article  CAS  Google Scholar 

  116. Zhang, Y.; Li, X. H.; Peng, C. X. Modification of photoluminescence properties of ZnO island films by localized surface plasmons. Chin. Phys. Lett. 2012, 29, 107803.

    Article  CAS  Google Scholar 

  117. Sobhani, A.; Knight, M. W.; Wang, Y. M.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z. Y.; Nordlander, P.; Halas, N. J. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643.

    Article  CAS  Google Scholar 

  118. Li, H. C.; Cao, Y.; Wang, Z. H.; Feng, X. Flexible and stretchable inorganic optoelectronics. Opt. Mater. Express 2019, 9, 4023–4049.

    Article  CAS  Google Scholar 

  119. Goykhman, I.; Desiatov, B.; Khurgin, J.; Shappir, J.; Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 2011, 11, 2219–2224.

    Article  CAS  Google Scholar 

  120. Hu, F.; Dai, X. Y.; Zhou, Z. Q.; Kong, X. Y.; Sun, S. L.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Sun, J. Black silicon Schottky photodetector in sub-bandgap near-infrared regime. Opt. Express 2019, 27, 3161–3168.

    Article  CAS  Google Scholar 

  121. Goykhman, I.; Desiatov, B.; Khurgin, J.; Shappir, J.; Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 2012, 20, 28594–28602.

    Article  Google Scholar 

  122. Moghaddam, M. K.; Fleury, R. Slow light engineering in resonant photonic crystal line-defect waveguides. Opt. Express 2019, 27, 26229–26238.

    Article  CAS  Google Scholar 

  123. Vlasov, Y. A.; O’Boyle, M.; Hamann, H. F.; McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 2005, 438, 65–69.

    Article  CAS  Google Scholar 

  124. Mekis, A.; Chen, J. C.; Kurland, I.; Fan, S. H.; Villeneuve, P. R.; Joannopoulos, J. D. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 1996, 77, 3787–3790.

    Article  CAS  Google Scholar 

  125. White, T. P.; O’Faolain, L.; Li, J. T.; Andreani, L. C.; Krauss, T. F. Silica-embedded silicon photonic crystal waveguides. Opt. Express 2008, 16, 17076–17081.

    Article  CAS  Google Scholar 

  126. Krauss, T. F. Planar photonic crystal waveguide devices for integrated optics. Phys. Stat. Sol. 2003, 197, 688–702.

    Article  CAS  Google Scholar 

  127. Schall, D.; Porschatis, C.; Otto, M.; Neumaier, D. Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line. J. Phys. D:Appl. Phys. 2017, 50, 124004.

    Article  CAS  Google Scholar 

  128. Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 2011, 11, 4688–4692.

    Article  CAS  Google Scholar 

  129. Lemme, M. C.; Koppens, F. H. L.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Gate-activated photoresponse in a graphene p—n junction. Nano Lett. 2011, 11, 4134–4137.

    Article  CAS  Google Scholar 

  130. Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Selvaraja, S. K.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73.

    Article  CAS  Google Scholar 

  131. Long, Y.; Wang, J. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces. Sci. Rep. 2014, 4, 5409.

    Article  CAS  Google Scholar 

  132. Tan, Y.; Chen, S. T.; Dai, D. X. Polarization-selective microring resonators. Opt. Express 2017, 25, 4106–4119.

    Article  Google Scholar 

  133. Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

    Article  CAS  Google Scholar 

  134. Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; Van Hulst, N. F. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 2015, 10, 437–443.

    Article  CAS  Google Scholar 

  135. Ding, Y. H.; Cheng, Z.; Zhu, X. L.; Yvind, K.; Dong, J. J.; Galili, M.; Hu, H.; Mortensen, N. A.; Xiao, S. S.; Oxenløwe, L. K. Ultracompact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 2020, 9, 317–325.

    Article  CAS  Google Scholar 

  136. Schall, D.; Neumaier, D.; Mohsin, M.; Chmielak, B.; Bolten, J.; Porschatis, C.; Prinzen, A.; Matheisen, C.; Kuebart, W.; Junginger, B. et al. 50 Gbit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 2014, 1, 781–784.

    Article  CAS  Google Scholar 

  137. Shiue, R. J.; Gao, Y. D.; Wang, Y. F.; Peng, C.; Robertson, A. D.; Efetov, D. K.; Assefa, S.; Koppens, F. H. L.; Hone, J.; Englund, D. High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 2015, 15, 7288–7293.

    Article  CAS  Google Scholar 

  138. Ansell, D.; Radko, I. P.; Han, Z.; Rodriguez, F. J.; Bozhevolnyi, S. I.; Grigorenko, A. N. Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 2015, 6, 8846.

    Article  CAS  Google Scholar 

  139. Cakmakyapan, S.; Lu, P. K.; Navabi, A.; Jarrahi, M. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Sci. Appl. 2018, 7, 20.

    Article  CAS  Google Scholar 

  140. Jadidi, M. M.; Sushkov, A. B.; Myers-Ward, R. L.; Boyd, A. K.; Daniels, K. M.; Gaskill, D. K.; Fuhrer, M. S.; Drew, H. D.; Murphy, T. E. Tunable terahertz hybrid metal-graphene plasmons. Nano Lett. 2015, 15, 7099–7104.

    Article  CAS  Google Scholar 

  141. Degl’Innocenti, R.; Xiao, L.; Kindness, S. J.; Kamboj, V. S.; Wei, B. B.; Braeuninger-Weimer, P.; Nakanishi, K.; Aria, A. I.; Hofmann, S.; Beere, H. E. et al. Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays. J. Phys. D:Appl. Phys. 2017, 50, 174001.

    Article  CAS  Google Scholar 

  142. Tian, J.; Yu, S. Q.; Yan, W.; Qiu, M. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl. Phys. Lett. 2009, 95, 013504.

    Article  CAS  Google Scholar 

  143. Nielsen, M. P.; Lafone, L.; Rakovich, A.; Sidiropoulos, T. P. H.; Rahmani, M.; Maier, S. A.; Oulton, R. F. Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett. 2016, 16, 1410–1414.

    Article  CAS  Google Scholar 

  144. Sorger, V. J.; Oulton, R. F.; Yao, J.; Bartal, G.; Zhang, X. Plasmonic Fabry—Pérot nanocavity. Nano Lett. 2009, 9, 3489–3493.

    Article  CAS  Google Scholar 

  145. Oulton, R. F.; Bartal, G.; Pile, D. F. P.; Zhang, X. Confinement and propagation characteristics of subwavelength plasmonic modes. New J. Phys. 2008, 10, 105018.

    Article  CAS  Google Scholar 

  146. Miller, D. A. B. Are optical transistors the logical next step. Nat. Photonics 2010, 4, 3–5.

    Article  CAS  Google Scholar 

  147. Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526.

    Article  CAS  Google Scholar 

  148. Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

    Article  CAS  Google Scholar 

  149. Hu, Y. T.; Pantouvaki, M.; Van Campenhout, J.; Brems, S.; Asselberghs, I.; Huyghebaert, C.; Absil, P.; Van Thourhout, D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev. 2016, 10, 307–316.

    Article  CAS  Google Scholar 

  150. Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410.

    Article  CAS  Google Scholar 

  151. Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics 2016, 3, 1564–1568.

    Article  CAS  Google Scholar 

  152. Liu, J. M.; Khan, Z. U.; Wang, C.; Zhang, H.; Sarjoghian, S. Review of graphene modulators from the low to the high figure of merits. J. Phys. D:Appl. Phys. 2020, 53, 233002.

    Article  CAS  Google Scholar 

  153. Ding, Y. H.; Zhu, X. L.; Xiao, S. S.; Hu, H.; Frandsen, L. H.; Mortensen, N. A.; Yvind, K. Effective electro-optical modulation with high extinction ratio by a graphene—silicon microring resonator. Nano Lett. 2015, 15, 4393–4400.

    Article  CAS  Google Scholar 

  154. Cai, X. L.; Huang, D. X.; Zhang, X. L. Numerical analysis of polarization splitter based on vertically coupled microring resonator. Opt. Express 2006, 14, 11304–11311.

    Article  Google Scholar 

  155. Gheorma, I. L.; Osgood, R. M. Fundamental limitations of optical resonator based high-speed EO modulators. IEEE Photonics Technol. Lett. 2002, 14, 795–797.

    Article  Google Scholar 

  156. Du, W.; Li, E. P.; Hao, R. Tunability analysis of a graphene-embedded ring modulator. IEEE Photonics Technol. Lett. 2014, 26, 2008–2011.

    Article  CAS  Google Scholar 

  157. Degl’Innocenti, R.; Jessop, D. S.; Shah, Y. D.; Sibik, J.; Zeitler, J. A.; Kidambi, P. R.; Hofmann, S.; Beere, H. E.; Ritchie, D. A. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano 2014, 8, 2548–2554.

    Article  CAS  Google Scholar 

  158. Yu, S. L.; Wu, X. Q.; Wang, Y. P.; Guo, X.; Tong, L. M. 2D materials for optical modulation: Challenges and opportunities. Adv. Mater. 2017, 29, 1606128.

    Article  CAS  Google Scholar 

  159. Mohsin, M.; Neumaier, D.; Schall, D.; Otto, M.; Matheisen, C.; Giesecke, A. L.; Sagade, A. A.; Kurz, H. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep. 2015, 5, 10967.

    Article  CAS  Google Scholar 

  160. Sorianello, V.; De Angelis, G.; Cassese, T.; Midrio, M.; Romagnoli, M.; Moshin, M.; Otto, M.; Neumaier, D.; Asselberghs, I.; Van Campenhout, J. et al. Complex effective index in graphene-silicon waveguides. Opt. Express 2016, 24, 29984–29993.

    Article  CAS  Google Scholar 

  161. Soldano, L. B.; Pennings, E. C. M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Technol. 1995, 13, 615–627.

    Article  Google Scholar 

  162. Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photonics 2018, 12, 40–44.

    Article  CAS  Google Scholar 

  163. Chen, H. T.; Padilla, W. J.; Cich, M. J.; Azad, A. K.; Averitt, R. D.; Taylor, A. J. A metamaterial solid-state terahertz phase modulator. Nat. Photonics 2009, 3, 148–151.

    Article  CAS  Google Scholar 

  164. Song, B. K.; Liu, F.; Wang, H. N.; Miao, J. S.; Chen, Y. L.; Kumar, P.; Zhang, H. Q.; Liu, X. W.; Gu, H. G.; Stach, E. A. et al. Giant gate-tunability of complex refractive index in semiconducting carbon nanotubes. ACS Photonics 2020, 7, 2896–2905.

    Article  CAS  Google Scholar 

  165. Gemo, E.; Kesava, S. V.; De Galarreta, C. R.; Trimby, L.; Carrillo, S. G. C.; Riede, M.; Baldycheva, A.; Alexeev, A.; Wright, C. D. Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry. Opt. Mater. Express 2020, 10, 1675–1686.

    Article  CAS  Google Scholar 

  166. Wang, G. Z.; Zhang, S. F.; Umran, F. A.; Cheng, X.; Dong, N. N.; Coghlan, D.; Cheng, Y.; Zhang, L.; Blau, W. J.; Wang, J. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation. Appl. Phys. Lett. 2014, 104, 141909.

    Article  CAS  Google Scholar 

  167. Xiong, C.; Gill, D. M.; Proesel, J. E.; Orcutt, J. S.; Haensch, W.; Green, W. M. J. Monolithic 56 Gb/s silicon photonic pulseamplitude modulation transmitter. Optica 2016, 3, 1060–1065.

    Article  CAS  Google Scholar 

  168. Yu, H.; Pantouvaki, M.; Van Campenhout, J.; Korn, D.; Komorowska, K.; Dumon, P.; Li, Y. L.; Verheyen, P.; Absil, P.; Alloatti, L. et al. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt. Express 2012, 20, 12926–12938.

    Article  CAS  Google Scholar 

  169. Wang, J.; Qiu, C.; Li, H.; Ling, W.; Li, L.; Pang, A.; Sheng, Z.; Wu, A. M.; Wang, X.; Zou, S. C. et al. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. J. Lightwave Technol. 2013, 31, 4119–4125.

    Article  Google Scholar 

  170. Han, J.; Qi, M.; Wu, H.; Wang, R. D.; Li, D. D.; Jiang, M.; Ren, Z. Y. All-optical modulator based on reduced graphene oxide coated D-shaped fiber waveguide. Appl. Phys. Express 2019, 12, 112002.

    Article  CAS  Google Scholar 

  171. Wang, M. K.; Li, J. H.; Chen, K. X.; Hu, Z. F. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber. Opt. Express 2020, 28, 21464–21473.

    Article  CAS  Google Scholar 

  172. Odoeze, J. A. H.; Hameed, M. F. O.; Shalaby, H. M. H.; Obayya, S. S. A. Si-core photonic crystal fiber transverse-electric pass polarizer. J. Opt. Soc. Am. B 2018, 35, 980–986.

    Article  Google Scholar 

  173. Feth, J. R.; Chang, C. L. Metal-clad fiber-optic cutoff polarizer. Opt. Lett. 1986, 11, 386–388.

    Article  CAS  Google Scholar 

  174. Dyott, R. B.; Bello, J.; Handerek, V. A. Indium-coated D-shaped-fiber polarizer. Opt. Lett. 1987, 12, 287–289.

    Article  CAS  Google Scholar 

  175. Youngblood, N.; Anugrah, Y.; Ma, R.; Koester, S. J.; Li, M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 2014, 14, 2741–2746.

    Article  CAS  Google Scholar 

  176. Zhou, H.; Gu, T. Y.; McMillan, J. F.; Yu, M. B.; Lo, G. Q.; Kwong, D. L.; Feng, G. Y.; Zhou, S. H.; Wong, C. W. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides. Appl. Phys. Lett. 2016, 108, 111106.

    Article  CAS  Google Scholar 

  177. Karman, G. P.; McDonald, G. S.; New, G. H. C.; Woerdman, J. P. Fractal modes in unstable resonators. Nature 1999, 402, 138.

    Article  CAS  Google Scholar 

  178. Tong, L. M.; Gattass, R. R.; Ashcom, J. B.; He, S. L.; Lou, J. Y.; Shen, M. Y.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 426, 816–819.

    Article  CAS  Google Scholar 

  179. Lim, G. K.; Chen, Z. L.; Clark, J.; Goh, R. G. S.; Ng, W. H.; Tan, H. W.; Friend, R. H.; Ho, P. K. H.; Chua, L. L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554–560.

    Article  CAS  Google Scholar 

  180. Vasko, F. T.; Ryzhii, V. Photoconductivity of intrinsic graphene. Phys. Rev. B 2008, 77, 195433.

    Article  CAS  Google Scholar 

  181. Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.

    Article  CAS  Google Scholar 

  182. Keller, U.; Weingarten, K. J.; Kartner, F. X.; Kopf, D.; Braun, B.; Jung, I. D.; Fluck, R.; Honninger, C.; Matuschek, N.; Der Au, J. A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453.

    Article  CAS  Google Scholar 

  183. Ding, Y.; Guan, X.; Zhu, X.; Hu, H.; Bozhevolnyi, S. I.; Oxenlowe, L. K.; Jin, K. J.; Mortensen, N. A.; Xiao, S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 2017, 9, 15576–15581.

    Article  CAS  Google Scholar 

  184. Shu, H. W.; Su, Z. T.; Huang, L.; Wu, Z. N.; Wang, X. J.; Zhang, Z. Y.; Zhou, Z. P. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci. Rep. 2018, 8, 991.

    Article  CAS  Google Scholar 

  185. Cheng, Z.; Zhu, X. L.; Galili, M.; Frandsen, L. H.; Hu, H.; Xiao, S. S.; Dong, J. J.; Ding, Y. H.; Oxenløwe, L. K.; Zhang, X. L. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics 2019, 9, 2377–2385.

    Article  CAS  Google Scholar 

  186. Giambra, M. A.; Sorianello, V.; Miseikis, V.; Marconi, S.; Montanaro, A.; Galli, P.; Pezzini, S.; Coletti, C.; Romagnoli, M. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt. Express 2019, 27, 20145–20155.

    Article  CAS  Google Scholar 

  187. Uddin, S.; Kim, S.; Kim, D.; Choi, J.; Song, Y. W. Conformal graphene directly synthesized on a femtosecond laser-scribed infiber microstructure for high-energy ultrafast optical pulses. ACS Nano 2021, 15, 20300–20310.

    Article  CAS  Google Scholar 

  188. Cheng, Y.; Yu, W. T.; Xie, J.; Wang, R. Y.; Cui, G.; Cheng, X.; Li, M. W.; Wang, K.; Li, J. L.; Sun, Z. P. et al. Controllable growth of graphene photonic crystal fibers with tunable optical nonlinearity. ACS Photonics 2022, 9, 961–968.

    Article  CAS  Google Scholar 

  189. Dulkeith, E.; Vlasov, Y. A.; Chen, X. G.; Panoiu, N. C.; Osgood, R. M. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 2006, 14, 5524–5534.

    Article  Google Scholar 

  190. Suzuki, N. FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides. J. Lightwave Technol. 2007, 25, 2495–2501.

    Article  Google Scholar 

  191. Huang, P. L.; Lin, S. C.; Yeh, C. Y.; Kuo, H. H.; Huang, S. H.; Lin, G. R.; Li, L. J.; Su, C. Y.; Cheng, W. H. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express 2012, 20, 2460–2465.

    Article  CAS  Google Scholar 

  192. Zhao, J. Q.; Ruan, S. C.; Yan, P. G.; Zhang, H.; Yu, Y. Q.; Wei, H. F.; Luo, J. Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser. Opt. Eng. 2013, 52, 106105.

    Article  Google Scholar 

  193. Zhu, P. F.; Lin, Z. B.; Ning, Q. Y.; Cai, Z. R.; Xing, X. B.; Liu, J.; Chen, W. C.; Luo, Z. C.; Luo, A. P.; Xu, W. C. Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber. Laser Phys. Lett. 2013, 10, 105107.

    Article  CAS  Google Scholar 

  194. Zhao, N.; Liu, M.; Liu, H.; Zheng, X. W.; Ning, Q. Y.; Luo, A. P.; Luo, Z. C.; Xu, W. C. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Opt. Express 2014, 22, 10906–10913.

    Article  CAS  Google Scholar 

  195. Park, N. H.; Jeong, H.; Choi, S. Y.; Kim, M. H.; Rotermund, F.; Yeom, D. I. Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking. Opt. Express 2015, 23, 19806–19812.

    Article  CAS  Google Scholar 

  196. Mouchel, P.; Semaan, G.; Niang, A.; Salhi, M.; Le Flohic, M.; Sanchez, F. High power passively mode-locked fiber laser based on graphene nanocoated optical taper. Appl. Phys. Lett. 2017, 111, 031106.

    Article  CAS  Google Scholar 

  197. Khurgin, J. B. Graphene—A rather ordinary nonlinear optical material. Appl. Phys. Lett. 2014, 104, 161116.

    Article  CAS  Google Scholar 

  198. Hendry, E.; Hale, P. J.; Moger, J.; Savchenko, A. K.; Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401.

    Article  CAS  Google Scholar 

  199. Morichetti, F.; Canciamilla, A.; Ferrari, C.; Samarelli, A.; Sorel, M.; Melloni, A. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2011, 2, 296.

    Article  CAS  Google Scholar 

  200. Foster, M. A.; Salem, R.; Geraghty, D. F.; Turner-Foster, A. C.; Lipson, M.; Gaeta, A. L. Silicon-chip-based ultrafast optical oscilloscope. Nature 2008, 456, 81–84.

    Article  CAS  Google Scholar 

  201. Yang, Y. X.; Xu, Z. Z.; Jiang, X. H.; He, Y.; Guo, X. H.; Zhang, Y.; Qiu, C. Y.; Su, Y. K. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer. Photonics Res. 2018, 6, 965–970.

    Article  CAS  Google Scholar 

  202. Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.

    Article  CAS  Google Scholar 

  203. Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758.

    Article  CAS  Google Scholar 

  204. Davidovikj, D.; Alijani, F.; Cartamil-Bueno, S. J.; Van Der Zant, H. S. J.; Amabili, M.; Steeneken, P. G. Nonlinear dynamic characterization of two-dimensional materials. Nat. Commun. 2017, 8, 1253.

    Article  CAS  Google Scholar 

  205. Ngo, G. Q.; George, A.; Schock, R. T. K.; Tuniz, A.; Najafidehaghani, E.; Gan, Z. Y.; Geib, N. C.; Bucher, T.; Knopf, H.; Saravi, S. et al. Scalable functionalization of optical fibers using atomically thin semiconductors. Adv. Mater. 2020, 32, 2003826.

    Article  CAS  Google Scholar 

  206. Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

    Article  CAS  Google Scholar 

  207. Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886.

    Article  CAS  Google Scholar 

  208. Liu, H. Z.; Li, Y. L.; You, Y. S.; Ghimire, S.; Heinz, T. F.; Reis, D. A. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 2017, 13, 262–265.

    Article  CAS  Google Scholar 

  209. Zhang, J.; Liao, G. Z.; Jin, S. S.; Cao, D.; Wei, Q. S.; Lu, H. H.; Yu, J. H.; Cai, X.; Tan, S. Z.; Xiao, Y. et al. All-fiber-optic temperature sensor based on reduced graphene oxide. Laser Phys. Lett. 2014, 11, 035901.

    Article  CAS  Google Scholar 

  210. Li, L.; Feng, Z. Y.; Qiao, X. G.; Yang, H. Z.; Wang, R. H.; Su, D.; Wang, Y. P.; Bao, W. J.; Li, J. C.; Shao, Z. H. et al. Ultrahigh sensitive temperature sensor based on Fabry—Pérot interference assisted by a graphene diaphragm. IEEE Sens. J. 2015, 15, 505–509.

    Article  CAS  Google Scholar 

  211. Li, C.; Liu, Q. W.; Peng, X. B.; Fan, S. C. Analyzing the temperature sensitivity of Fabry—Perot sensor using multilayer graphene diaphragm. Opt. Express 2015, 23, 27494–27502.

    Article  CAS  Google Scholar 

  212. Yao, B. C.; Wu, Y.; Zhang, A. Q.; Rao, Y. J.; Wang, Z. G.; Cheng, Y.; Gong, Y.; Zhang, W. L.; Chen, Y. F.; Chiang, K. S. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express 2014, 22, 28154–28162.

    Article  CAS  Google Scholar 

  213. Sridevi, S.; Vasu, K. S.; Bhat, N.; Asokan, S.; Sood, A. K. Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings. Sens. Actuat. B: Chem. 2016, 223, 481–486.

    Article  CAS  Google Scholar 

  214. Tian, Z. W.; Lu, H. H.; Yang, B.; Wang, Y. T.; Qiu, W. Q.; Yu, J. H.; Tang, J. Y.; Luo, Y. H.; Cai, X.; Tan, S. Z. et al. Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing. IEEE Photonics Technol. Lett. 2015, 27, 798–801.

    Article  CAS  Google Scholar 

  215. Sansone, L.; Malachovska, V.; La Manna, P.; Musto, P.; Borriello, A.; De Luca, G.; Giordano, M. Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sens. Actuat. B: Chem. 2014, 202, 523–526.

    Article  CAS  Google Scholar 

  216. Ao, Z. M.; Yang, J.; Li, S.; Jiang, Q. Enhancement of CO detection in Al doped graphene. Chem. Phys. Lett. 2008, 461, 276–279.

    Article  CAS  Google Scholar 

  217. An, N.; Tan, T.; Peng, Z.; Qin, C. Y.; Yuan, Z. Y.; Bi, L.; Liao, C. R.; Wang, Y. P.; Rao, Y. J.; Soavi, G. et al. Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 2020, 20, 6473–6480.

    Article  Google Scholar 

  218. Yan, S. Q.; Zhu, X. L.; Frandsen, L. H.; Xiao, S. S.; Mortensen, N. A.; Dong, J. J.; Ding, Y. H. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun. 2017, 8, 14411.

    Article  CAS  Google Scholar 

  219. Yao, B. C.; Wu, Y.; Cheng, Y.; Zhang, A. Q.; Gong, Y.; Rao, Y. J.; Wang, Z. G.; Chen, Y. F. All-optical Mach—Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sens. Actuat. B: Chem. 2014, 194, 142–148.

    Article  CAS  Google Scholar 

  220. Kim, J. T.; Choi, H.; Shin, E.; Park, S.; Kim, I. G. Graphene-based optical waveguide tactile sensor for dynamic response. Sci. Rep. 2018, 8, 16118.

    Article  CAS  Google Scholar 

  221. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

    Article  CAS  Google Scholar 

  222. Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207.

    Article  CAS  Google Scholar 

  223. Xu, X. F.; Pereira, L. F. C.; Wang, Y.; Wu, J.; Zhang, K. W.; Zhao, X. M.; Bae, S.; Bui, C. T.; Xie, R. G.; Thong, J. T. L. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 2014, 5, 3689.

    Article  CAS  Google Scholar 

  224. Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. U1904193), the Special Program for Basic Research in University of Henan Province, China (No. 20zx010), the Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province, China (No. 2019GGJS025), the Science and Technology Development Project of Henan Province, China (No. 212102210454), the Program for Innovative Research Team in Science and Technology in the University of Henan Province (No. 20IRTSTHN012), the Zhongyuan Thousand Talents Program of Henan Province, and the National Young Top-Notch Talents of Ten-Thousand Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzong Gu or Ke Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, K., Li, Z., Gu, Y. et al. Graphene-integrated waveguides: Properties, preparation, and applications. Nano Res. 15, 9704–9726 (2022). https://doi.org/10.1007/s12274-022-4539-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4539-4

Keywords

Navigation