Skip to main content
Log in

Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15−xNx as a visible-light-responsive photocatalyst for water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of visible-light-responsive photocatalysts for promoting solar-driven oxygen (O2) production from water splitting is a potentially attractive but still a challenging scheme. In the present work, a (111)-type layered perovskite oxynitride, Sr5Nb4O15−xNx, was synthesized via the nitridation treatment of the disk-like oxide precursor under the ammonia flow, which was fabricated using a flux method. The homogeneous dispersion of nitrogen (N) dopant in N-doped Sr5Nb4O15 was ascertained by energy-dispersive X-ray spectroscopy characterization, and the Sr5Nb4O15−xNx was found to be a direct semiconductor with a light absorption edge of approximately 640 nm. Density functional theory investigation implies that the hybridization between the outmost N 2p orbitals and O 2p orbitals upshifts the original valence band maximum of Sr5Nb4O15 and endows its visible-light-responsive characteristics. Loading with cobalt oxide (CoOx) as cocatalyst, the as-prepared Sr5Nb4O15−xNx exhibited an enhanced photocatalytic O2 evolution activity from water splitting under visible-light illumination (λ > 420 nm). Moreover, another homogeneous N-doped layered perovskite-type niobium (Nb)-based oxynitride, Ba5Nb4O15−xNx, was also developed and investigated for the visible-light-actuated O2 production, highlighting the versatility of the present approach for exploring novel visible-light-responsive photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399.

    Article  CAS  Google Scholar 

  2. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

    Article  CAS  Google Scholar 

  3. Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

    Article  CAS  Google Scholar 

  4. Chen, D.; Ye, J. H. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chem. Mater. 2009, 21, 2327–2333.

    Article  CAS  Google Scholar 

  5. Nakamura, A.; Tomita, O.; Higashi, M.; Hosokawa, S.; Tanaka, T.; Abe, R. Solvothermal synthesis of Ca2Nb2O7 fine particles and their high activity for photocatalytic water splitting into H2 and O2 under UV light irradiation. Chem. Lett. 2015, 44, 1001–1003.

    Article  CAS  Google Scholar 

  6. Zhang, Y. F.; Yuan, J.; Gong, H. H.; Cao, Y.; Liu, K. W.; Cao, H. W.; Yan, H. J.; Zhu, J. G. (00l)-Facet-exposed planelike ABi2Nb2O9 (A = Ca, Sr, Ba) powders with a single-crystal grain for enhancement of photocatalytic activity. ACS Sustainable Chem. Eng. 2018, 6, 3840–3852.

    Article  CAS  Google Scholar 

  7. Matsumoto, Y.; Koinuma, M.; Iwanaga, Y.; Sato, T.; Ida, S. N doping of oxide nanosheets. J. Am. Chem. Soc. 2009, 131, 6644–6645.

    Article  CAS  Google Scholar 

  8. Zhou, Y. N.; Wen, T.; Kong, W. Q.; Yang, B. C.; Wang, Y. G. The impact of nitrogen doping and reduced-niobium self-doping on the photocatalytic activity of ultra-thin Nb3O8 nanosheets. Dalton Trans. 2017, 46, 13854–13861.

    Article  CAS  Google Scholar 

  9. Liu, C.; Feng, Y.; Han, Z. T.; Sun, Y.; Wang, X. Q.; Zhang, Q. F.; Zou, Z. G. Z-scheme N-doped K4Nb6O17/g-C3N4 heterojunction with superior visible-light-driven photocatalytic activity for organic pollutant removal and hydrogen production. Chin. J. Catal. 2021, 42, 164–174.

    Article  CAS  Google Scholar 

  10. Wu, F. F.; Lv, M. L.; Sun, X. Q.; Xie, Y. H.; Chen, H. M.; Ni, S.; Liu, G.; Xu, X. X. Efficient photocatalytic oxygen production over nitrogen-doped Sr4Nb2O9 under visible-light irradiation. ChemCatChem 2016, 8, 615–623.

    Article  CAS  Google Scholar 

  11. Ji, S. M.; Borse, P. H.; Kim, H. G.; Hwang, D. W.; Jang, J. S.; Bae, S. W.; Lee, J. S. Photocatalytic hydrogen production from watermethanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: Effects of catalyst structure. Phys. Chem. Chem. Phys. 2005, 7, 1315–1321.

    Article  CAS  Google Scholar 

  12. Bao, Y. F.; Du, S. W.; Qi, Y.; Li, G.; Zhang, P.; Shao, G. S.; Zhang, F. X. Synthesis of a visible-light-responsive perovskite SmTiO2N bifunctional photocatalyst via an evaporation-assisted layered-precursor strategy. Adv. Mater. 2021, 33, 2101883.

    Article  CAS  Google Scholar 

  13. Ida, S.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T. Preparation of tantalum-based oxynitride nanosheets by exfoliation of a layered oxynitride, CsCa2Ta3O10−xNy, and their photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 15773–15782.

    Article  CAS  Google Scholar 

  14. Sun, X. Q.; Mi, Y. L.; Jiao, F.; Xu, X. X. Activating layered perovskite compound Sr2TiO4 via La/N codoping for visible light photocatalytic water splitting. ACS Catal. 2018, 8, 3209–3221.

    Article  CAS  Google Scholar 

  15. Suzuki, H.; Tomita, O.; Higashi, M.; Abe, R. Design of nitrogen-doped layered tantalates for non-sacrificial and selective hydrogen evolution from water under visible light. J. Mater. Chem. A 2016, 4, 14444–14452.

    Article  CAS  Google Scholar 

  16. Xu, X. X.; Wang, R.; Sun, X. Q.; Lv, M. L.; Ni, S. Layered perovskite compound NaLaTiO4 modified by nitrogen doping as a visible light active photocatalyst for water splitting. ACS Catal. 2020, 10, 9889–9898.

    Article  CAS  Google Scholar 

  17. Miseki, Y.; Kato, H.; Kudo, A. Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2009, 2, 306–314.

    Article  CAS  Google Scholar 

  18. Yamada, T.; Murata, Y.; Wagata, H.; Yubuta, K.; Teshima, K. Facile morphological modification of Ba5Nb4O15 crystals using chloride flux and in situ growth investigation. Cryst. Growth Des. 2016, 16, 3954–3960.

    Article  CAS  Google Scholar 

  19. Kodera, M.; Moriya, Y.; Katayama, M.; Hisatomi, T.; Minegishi, T.; Domen, K. Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Sci. Rep. 2018, 8, 15849.

    Article  Google Scholar 

  20. Seo, J.; Moriya, Y.; Kodera, M.; Hisatomi, T.; Minegishi, T.; Katayama, M.; Domen, K. Photoelectrochemical water splitting on particulate ANbO2N (A = Ba, Sr) photoanodes prepared from perovskite-type ANbO3. Chem. Mater. 2016, 28, 6869–6876.

    Article  CAS  Google Scholar 

  21. Seo, J.; Nishiyama, H.; Yamada, T.; Domen, K. Visible-light-responsive photoanodes for highly active, stable water oxidation. Angew. Chem., Int. Ed. 2018, 57, 8396–8415.

    Article  CAS  Google Scholar 

  22. Hisatomi, T.; Katayama, C.; Moriya, Y.; Minegishi, T.; Katayama, M.; Nishiyama, H.; Yamada, T.; Domen, K. Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ. Sci. 2013, 6, 3595–3599.

    Article  CAS  Google Scholar 

  23. Wang, X.; Hisatomi, T.; Liang, J. W.; Wang, Z.; Xiang, Y. J.; Zhao, Y. H.; Dai, X. Y.; Takata, T.; Domen, K. Facet engineering of LaNbON2 transformed from LaKNaNbO5 for enhanced photocatalytic O2 evolution. J. Mater. Chem. A 2020, 8, 11743–11751.

    Article  CAS  Google Scholar 

  24. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  25. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  26. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  28. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  29. Oka, D.; Hirose, Y.; Kaneko, M.; Nakao, S.; Fukumura, T.; Yamashita, K.; Hasegawa, T. Anion-substitution-induced nonrigid variation of band structure in SrNbO3−xNx (0 ≤ x ≤ 1) epitaxial thin films. ACS Appl. Mater. Interfaces 2018, 10, 35008–35015.

    Article  CAS  Google Scholar 

  30. Vargas, B.; Ramos, E.; Pérez-Gutiérrez, E.; Alonso, J. C.; Solis-Ibarra, D. A direct bandgap copper-antimony halide perovskite. J. Am. Chem. Soc. 2017, 139, 9116–9119.

    Article  CAS  Google Scholar 

  31. Chen, S. S.; Yang, J. X.; Ding, C. M.; Li, R. G.; Jin, S. Q.; Wang, D. E.; Han, H. X.; Zhang, F. X.; Li, C. Nitrogen-doped layered oxide Sr5Ta4O15−xNx for water reduction and oxidation under visible light irradiation. J. Mater. Chem. A 2013, 1, 5651–5659.

    Article  Google Scholar 

  32. Bouri, M.; Aschauer, U. Suitability of different Sr2TaO3N surface orientations for photocatalytic water oxidation. Chem. Mater. 2020, 32, 75–84.

    Article  CAS  Google Scholar 

  33. Zeng, J. Y.; Wang, X. S.; Xie, B. R.; Li, Q. R.; Zhang, X. Z. Large π-conjugated metal-organic frameworks for infrared-light-driven CO2 reduction. J. Am. Chem. Soc. 2022, 144, 1218–1231.

    Article  CAS  Google Scholar 

  34. Li, Q. D.; Chen, Y.; Du, F.; Cui, X. L.; Dai, L. M. Bias-free synthesis of hydrogen peroxide from photo-driven oxygen reduction reaction using N-doped γ-graphyne catalyst. Appl. Catal. B: Environ. 2022, 304, 120959.

    Article  CAS  Google Scholar 

  35. Raziq, F.; Aligayev, A.; Shen, H. H.; Ali, S.; Shah, R.; Ali, S.; Bakhtiar, S. H.; Ali, A.; Zarshad, N.; Zada, A. et al. Exceptional photocatalytic activities of rGO modified (B, N) co-doped WO3, coupled with CdSe QDs for one photon Z-scheme system: A joint experimental and DFT study. Adv. Sci. 2022, 9, 2102530.

    Article  CAS  Google Scholar 

  36. Zhang, J. F.; Wageh, S.; Al-Ghamdi, A.; Yu, J. G. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl. Catal. B: Environ. 2016, 192, 101–107.

    Article  CAS  Google Scholar 

  37. Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 2016, 28, 4059–4064.

    Article  CAS  Google Scholar 

  38. Jin, Y.; Li, F.; Li, T.; Xing, X. C.; Fan, W. H.; Zhang, L. L.; Hu, C. Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Appl. Catal. B: Environ. 2022, 302, 120824.

    Article  CAS  Google Scholar 

  39. Zhou, M. Z.; Liu, J. P.; Ye, Y. J.; Sun, X.; Chen, H. J.; Zhou, D.; Yin, Y. M.; Zhang, N.; Ling, Y. H.; Ciucci, F. et al. Enhancing the intrinsic activity and stability of perovskite cobaltite at elevated temperature through surface stress. Small 2021, 17, 2104144.

    Article  CAS  Google Scholar 

  40. Kawashima, K.; Hojamberdiev, M.; Mabayoje, O.; Wygant, B. R.; Yubuta, K.; Mullins, C. B.; Domen, K.; Teshima, K. NH3-assisted chloride flux-coating method for direct fabrication of visible-light-responsive SrNbO2N crystal layers. CrystEngComm 2017, 19, 5532–5541.

    Article  CAS  Google Scholar 

  41. Dong, B. B.; Cui, J. Y.; Qi, Y.; Zhang, F. X. Nanostructure engineering and modulation of (oxy)nitrides for application in visible-light-driven water splitting. Adv. Mater. 2021, 33, 2004697.

    Article  CAS  Google Scholar 

  42. Hao, L. X.; Yang, Y. L.; Huan, Y.; Cheng, H. B.; Zhao, Y. Y.; Wang, Y. Y.; Yan, J.; Ren, W.; Ouyang, J. Achieving a high dielectric tunability in strain-engineered tetragonal K0.5Na0.5NbO3 films. npj Comput. Mater. 2021, 7, 62.

    Article  CAS  Google Scholar 

  43. Wang, X. H.; Lejus, A. M.; Vivien, D. Oxidation behavior of lanthanide aluminum oxynitrides with magnetoplumbite-like structure. J. Am. Ceram. Soc. 1990, 73, 770–774.

    Article  CAS  Google Scholar 

  44. Chen, S. S.; Shen, S.; Liu, G. J.; Qi, Y.; Zhang, F. X.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem., Int. Ed. 2015, 54, 3047–3051.

    Article  CAS  Google Scholar 

  45. Hara, M.; Hitoki, G.; Takata, T.; Kondo, J. N.; Kobayashi, H.; Domen, K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003, 78, 555–560.

    Article  CAS  Google Scholar 

  46. Zhang, F. X.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; Oishi, S.; Domen, K. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J. Am. Chem. Soc. 2012, 134, 8348–8351.

    Article  CAS  Google Scholar 

  47. Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for highperformance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

    Article  CAS  Google Scholar 

  48. Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Well-controlled SrTiO3@Mo2C core—shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 2018, 47, 463–473.

    Article  CAS  Google Scholar 

  49. Chauhan, H.; Kumar, Y.; Dana, J.; Satpati, B.; Ghosh, H. N.; Deka, S. Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis. Nanoscale 2016, 8, 15802–15812.

    Article  CAS  Google Scholar 

  50. Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J. Mater. Chem. A 2017, 5, 10591–10598.

    Article  CAS  Google Scholar 

  51. Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, S. L.; Yan, W. Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 270, 118900.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the National Key R&D Program of China (No. 2020YFA0406102), the National Natural Science Foundation of China (Nos. 21633009 and 21925206), the International Partnership Program of Chinese Academy of Sciences (No. 121421KYSB20190025), the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund, CAS (No. DNL 201913), and the DICP Foundation of Innovative Research (No. DICP I201927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxiang Zhang.

Electronic Supplementary Material

12274_2022_4529_MOESM1_ESM.pdf

Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15−xNx as a visible-light-responsive photocatalyst for water oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Zou, H., Bao, Y. et al. Homogeneous nitrogen-doped (111)-type layered Sr5Nb4O15−xNx as a visible-light-responsive photocatalyst for water oxidation. Nano Res. 15, 9976–9984 (2022). https://doi.org/10.1007/s12274-022-4529-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4529-6

Keywords

Navigation