Skip to main content
Log in

Systemic delivery of gemcitabine analogue and STAT3 siRNA promotes antitumor immunity against melanoma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Immunosuppressive myeloid cells in the tumor microenvironment (TME) inhibit T-cell-mediated immune response and promote tumor progression. Therapeutically targeting both tumor cells and myeloid cells such as myeloid-derived suppressor cells (MDSCs), is expected to promote antitumor immunity. Gemcitabine (Gem) can serve as a chemotherapeutic drug and a MDSC-depleting agent. Aberrant activation of STAT3 promotes tumor cell growth and orchestrates the immunosuppressive activity of tumor-associated myeloid cells. Here we describe a strategy to kill tumor cells as well as inhibit the expansion and suppressive function of myeloid cells through the systemic delivery of gemcitabine monophosphate (GMP) and STAT3 siRNA (siSTAT3). To enhance their in vivo delivery efficiency, we formulate GMP and siSTAT3 into a lipid-coated calcium phosphate (LCP) nanoparticle and a liposome-protamine-hyaluronic acid (LPH) nanoparticle, respectively. Compared to the control and monotherapy groups, combined GMP and siSTAT3 nanoparticles effectively induced tumor cell death, downregulated a wide range of pro-tumor signaling pathways and immunosuppressive mediators, eliminated MDSCs, enhanced T cell effector functions in tumors and lymphoid compartments, and led to superior therapeutic efficacy in a syngeneic mouse melanoma model. Additionally, these nanoparticles can serve as adjuvant treatment to improve the therapeutic response of anti-PD-1-based immune checkpoint blockade therapy. Thus, the combination of gemcitabine chemotherapy and STAT3 inhibition through nanotechnology could effectively kill tumor cells, alleviate the immunosuppressive TME, and enhance endogenous antitumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nefedova, Y.; Nagaraj, S.; Rosenbauer, A.; Muro-Cacho, C.; Sebti, S. M.; Gabrilovich, D. I. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 2005, 65, 9525–9535.

    Article  CAS  Google Scholar 

  2. Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012, 12, 253–268.

    Article  CAS  Google Scholar 

  3. Umansky, V.; Blattner, C.; Gebhardt, C.; Utikal, J. The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 2016, 4, 36.

    Article  Google Scholar 

  4. Dufait, I.; Valckenborgh, E. V.; Menu, E.; Escors, D.; De Ridder, M.; Breckpot, K. Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: An opportunity for cancer therapy. Oncotarget 2016, 7, 42698–12715.

    Article  Google Scholar 

  5. Nefedova, Y.; Huang, M.; Kusmartsev, S.; Bhattacharya, R.; Cheng, P. Y.; Salup, R.; Jove, R.; Gabrilovich, D. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 2004, 172, 464–174.

    Article  CAS  Google Scholar 

  6. Fleming, V.; Hu, X. Y.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol. 2018, 9, 398.

    Article  Google Scholar 

  7. Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809.

    Article  CAS  Google Scholar 

  8. Albeituni, S. H.; Ding, C. L.; Yan, J. Hampering immune suppressors: Therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J. 2013, 19, 490–501.

    Article  CAS  Google Scholar 

  9. Condamine, T.; Gabrilovich, D. I. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011, 32, 19–25.

    Article  CAS  Google Scholar 

  10. Kortylewski, M.; Kujawski, M.; Wang, T. H.; Wei, S.; Zhang, S. M.; Pilon-Thomas, S.; Niu, G. L.; Kay, H.; Mulé, J.; Kerr, W. G. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 2005, 11, 1314–1321.

    Article  CAS  Google Scholar 

  11. Bromberg, J.; DarnellJr, J. E. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000, 19, 2468–2473.

    Article  CAS  Google Scholar 

  12. Yu, H.; Jove, R. The STATs of cancer—New molecular targets come of age. Nat. Rev. Cancer 2004, 4, 97–105.

    Article  CAS  Google Scholar 

  13. Soleimani, A. H.; Garg, S. M.; Paiva, I. M.; Vakili, M. R.; Alshareef, A.; Huang, Y. H.; Molavi, O.; Lai, R.; Lavasanifar, A. Micellar nanocarriers for the delivery of STAT3 dimerization inhibitors to melanoma. Drug Deliv. Transl. Res. 2017, 7, 571–581.

    Article  CAS  Google Scholar 

  14. Lin, L.; Hutzen, B.; Zuo, M. X.; Ball, S.; Deangelis, S.; Foust, E.; Pandit, B.; Ihnat, M. A.; Shenoy, S. S.; Kulp, S. et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res. 2010, 70, 2445–2454.

    Article  CAS  Google Scholar 

  15. Wang, H.; Liu, Z.; Guan, L. N.; Li, J. K.; Chen, S. Y.; Yu, W. Y.; Lai, M. D. LYW-6, a novel cryptotanshinone derived STAT3 targeting inhibitor, suppresses colorectal cancer growth and metastasis. Pharmacol. Res. 2020, 153, 104661.

    Article  CAS  Google Scholar 

  16. Huang, W.; Dong, Z.; Chen, Y.; Wang, F.; Wang, C. J.; Peng, H.; He, Y.; Hangoc, G.; Pollok, K.; Sandusky, G. et al. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene 2016, 35, 783–792.

    Article  CAS  Google Scholar 

  17. Escobar, Z.; Bjartell, A.; Canesin, G.; Evans-Axelsson, S.; Sterner, O.; Hellsten, R.; Johansson, M. H. Preclinical characterization of 3β-(N-acetyl l-cysteine methyl ester)-2aβ, 3-dihydrogaliellalactone (GPA512), a prodrug of a direct STAT3 inhibitor for the treatment of prostate cancer. J. Med. Chem. 2016, 59, 4551–4562.

    Article  CAS  Google Scholar 

  18. Fuh, B.; Sobo, M.; Cen, L.; Josiah, D.; Hutzen, B.; Cisek, K.; Bhasin, D.; Regan, N.; Lin, L.; Chan, C. et al. LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br. J. Cancer 2009, 100, 106–112.

    Article  CAS  Google Scholar 

  19. Bai, L. C.; Zhou, H. B.; Xu, R. Q.; Zhao, Y. J.; Chinnaswamy, K.; McEachern, D.; Chen, J. Y.; Yang, C. Y.; Liu, Z. M.; Wang, M. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 2019, 36, 498–511.e17.

    Article  CAS  Google Scholar 

  20. Mayr, B.; Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2001, 2, 599–609.

    Article  CAS  Google Scholar 

  21. ColemanIV, D. R.; Ren, Z. Y.; Mandal, P. K.; Cameron, A. G.; Dyer, G. A.; Muranjan, S.; Campbell, M.; Chen, X. M.; McMurray, J. S. Investigation of the binding determinants of phosphopeptides targeted to the SRC homology 2 domain of the signal transducer and activator of transcription 3. Development of a high-affinity peptide inhibitor. J. Med. Chem. 2005, 48, 6661–6670.

    Article  CAS  Google Scholar 

  22. Furtek, S. L.; Backos, D. S.; Matheson, C. J.; Reigan, P. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem. Biol. 2016, 11, 308–318.

    Article  CAS  Google Scholar 

  23. Arnold, L. A.; Kosinski, A.; Estébanez-Perpiñá, E.; Guy, R. K. Inhibitors of the interaction of a thyroid hormone receptor and coactivators: Preliminary structure—activity relationships. J. Med. Chem. 2007, 50, 5269–5280.

    Article  CAS  Google Scholar 

  24. Caboni, L.; Lloyd, D. G. Beyond the ligand-binding pocket: Targeting alternate sites in nuclear receptors. Med. Res. Rev. 2013, 33, 1081–1118.

    Article  CAS  Google Scholar 

  25. Younis, A.; Siddique, M. I.; Kim, C. K.; Lim, K. B. RNA interference (RNAi) induced gene silencing: A promising approach of hi-tech plant breeding. Int. J. Biol. Sci. 2014, 10, 1150–1158.

    Article  Google Scholar 

  26. Oguri, T.; Achiwa, H.; Sato, S.; Bessho, Y.; Takano, Y.; Miyazaki, M.; Muramatsu, H.; Maeda, H.; Niimi, T.; Ueda, R. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: A role of ABCC5 in gemcitabine sensitivity. Mol. Cancer Ther. 2006, 5, 1800–1806.

    Article  CAS  Google Scholar 

  27. Mandruzzato, S.; Solito, S.; Falisi, E.; Francescato, S.; Chiarion-Sileni, V.; Mocellin, S.; Zanon, A.; Rossi, C. R.; Nitti, D.; Bronte, V. et al. IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. J. Immunol. 2009, 182, 6562–6568.

    Article  CAS  Google Scholar 

  28. Zhang, Y.; Satterlee, A.; Huang, L. In vivo gene delivery by nonviral vectors: Overcoming hurdles? Mol. Ther. 2012, 20, 1298–1304.

    Article  CAS  Google Scholar 

  29. Workman, P.; Aboagye, E. O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D. J.; Double, J. A.; Everitt, J.; Farningham, D. A. H.; Glennie, M. J. et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 2010, 102, 1555–1577.

    Article  CAS  Google Scholar 

  30. Zhang, Y.; Bush, X.; Yan, B. F.; Chen, J. A. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 2019, 189, 48–59.

    Article  CAS  Google Scholar 

  31. Zhang, Y.; Schwerbrock, N. M.; Rogers, A. B.; Kim, W. Y.; Huang, L. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol. Ther. 2013, 21, 1559–1569.

    Article  CAS  Google Scholar 

  32. Qi, L. M.; Ma, J. M.; Shen, J. L. Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions. J. Colloid Interface Sci. 1997, 186, 498–500.

    Article  CAS  Google Scholar 

  33. Mozafari, M. R.; Reed, C. J.; Rostron, C.; Kocum, C.; Piskin, E. Formation and characterisation of non-toxic anionic liposomes for delivery of therapeutic agents to the pulmonary airways. Cell. Mol. Biol. Lett. 2002, 7, 243–244.

    Google Scholar 

  34. Zhang, Y.; Kim, W. Y.; Huang, L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials 2013, 34, 3447–3458.

    Article  CAS  Google Scholar 

  35. Al Zaid Siddiquee, K.; Turkson, J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008, 18, 254–267.

    Article  CAS  Google Scholar 

  36. Ostrand-Rosenberg, S. Myeloid derived-suppressor cells: Their role in cancer and obesity. Curr. Opin. Immunol. 2018, 51, 68–75.

    Article  CAS  Google Scholar 

  37. Yang, J. B.; Chatterjee-Kishore, M.; Staugaitis, S. M.; Nguyen, H.; Schlessinger, K.; Levy, D. E.; Stark, G. R. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 2005, 65, 939–947.

    Article  CAS  Google Scholar 

  38. Gato-Cañas, M.; de Morentin, X. M.; Blanco-Luquin, I.; Fernandez-Irigoyen, J.; Zudaire, I.; Liechtenstein, T.; Arasanz, H.; Lozano, T.; Casares, N.; Chaikuad, A. et al. A core of kinase-regulated interactomes defines the neoplastic MDSC lineage. Oncotarget 2015, 6, 27160–27175.

    Article  Google Scholar 

  39. Wang, J.; Zhang, Y.; Yin, K.; Xu, P. Q.; Tian, J.; Ma, J.; Tian, X. Y.; Wang, Y. G.; Tang, X. Y.; Xu, H. X. et al. IL-17A weakens the antitumor immunity by inhibiting apoptosis of MDSCs in Lewis lung carcinoma bearing mice. Oncotarget 2017, 8, 4814–4825.

    Article  Google Scholar 

  40. Chalmin, F.; Mignot, G.; Bruchard, M.; Chevriaux, A.; Végran, F.; Hichami, A.; Ladoire, S.; Derangère, V.; Vincent, J.; Masson, D. et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 2012, 36, 362–373.

    Article  CAS  Google Scholar 

  41. Pearson, G.; Robinson, F.; Gibson, T. B.; Xu, B. E.; Karandikar, M.; Berman, K.; Cobb, M. H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183.

    CAS  Google Scholar 

  42. Grohmann, U.; Mondanelli, G.; Belladonna, M. L.; Orabona, C.; Pallotta, M. T.; Iacono, A.; Puccetti, P.; Volpi, C. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 2017, 35, 37–45.

    Article  CAS  Google Scholar 

  43. Speiser, D. E.; Ho, P. C.; Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 2016, 16, 599–611.

    Article  CAS  Google Scholar 

  44. Schouppe, E.; Van Overmeire, E.; Laoui, D.; Keirsse, J.; Van Ginderachter, J. A. Modulation of CD8+ T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells. Immunobiology 2013, 218, 1385–1391.

    Article  CAS  Google Scholar 

  45. Cheng, P. Y.; Corzo, C. A.; Luetteke, N.; Yu, B.; Nagaraj, S.; Bui, M. M.; Ortiz, M.; Nacken, W.; Sorg, C.; Vogl, T. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 2008, 205, 2235–2249.

    Article  CAS  Google Scholar 

  46. Eriksson, E.; Wenthe, J.; Irenaeus, S.; Loskog, A.; Ullenhag, G. Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J. Transl. Med. 2016, 14, 282.

    Article  Google Scholar 

  47. Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016, 37, 208–220.

    Article  CAS  Google Scholar 

  48. Murdoch, C.; Muthana, M.; Coffelt, S. B.; Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 2008, 8, 618–631.

    Article  CAS  Google Scholar 

  49. Yang, L.; DeBusk, L. M.; Fukuda, K.; Fingleton, B.; Green-Jarvis, B.; Shyr, Y.; Matrisian, L. M.; Carbone, D. P.; Lin, P. C. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004, 6, 409–421.

    Article  CAS  Google Scholar 

  50. Goedegebuure, P.; Mitchem, J. B.; Porembka, M. R.; Tan, M. C. B.; Belt, B. A.; Wang-Gillam, A.; Gillanders, W. E.; Hawkins, W. G.; Linehan, D. C. Myeloid-derived suppressor cells: General characteristics and relevance to clinical management of pancreatic cancer. Curr. Cancer Drug Targets 2011, 11, 734–751.

    Article  CAS  Google Scholar 

  51. Strawn, L. M.; McMahon, G.; App, H.; Schreck, R.; Kuchler, W. R.; Longhi, M. P.; Hui, T. H.; Tang, C.; Levitzki, A.; Gazit, A. et al. Flk-1 as a target for tumor growth inhibition. Cancer Res. 1996, 56, 3540–3545.

    CAS  Google Scholar 

  52. Zou, S. L.; Tong, Q. Y.; Liu, B. W.; Huang, W.; Tian, Y.; Fu, X. H. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 2020, 19, 145.

    Article  CAS  Google Scholar 

  53. Venkatasubbarao, K.; Peterson, L.; Zhao, S. J.; Hill, P.; Cao, L.; Zhou, Q.; Nawrocki, S. T.; Freeman, J. W. Inhibiting signal transducer and activator of transcription-3 increases response to gemcitabine and delays progression of pancreatic cancer. Mol. Cancer 2013, 12, 104.

    Article  Google Scholar 

  54. Youn, J. I.; Nagaraj, S.; Collazo, M.; Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 2008, 181, 5791–5802.

    Article  CAS  Google Scholar 

  55. Mencacci, A.; Montagnoli, C.; Bacci, A.; Cenci, E.; Pitzurra, L.; Spreca, A.; Kopf, M.; Sharpe, A. H.; Romani, L. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J. Immunol. 2002, 169, 3180–3190.

    Article  CAS  Google Scholar 

  56. Yang, R. C.; Cai, Z.; Zhang, Y.; YutzyIV, W. H.; Roby K. F.; Roden R. B. S. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res. 2006, 66, 6807–6815.

    Article  CAS  Google Scholar 

  57. Norian, L. A.; Rodriguez, P. C.; O’Mara, L. A.; Zabaleta, J.; Ochoa, A. C.; Cella, M.; Allen, P. M. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res. 2009, 69, 3086–3094.

    Article  CAS  Google Scholar 

  58. Meireson, A.; Devos, M.; Brochez, L. IDO expression in cancer: Different compartment, different functionality. Front. Immunol. 2020, 11, 531491.

    Article  CAS  Google Scholar 

  59. Attili, I.; Karachaliou, N.; Bonanno, L.; Berenguer, J.; Bracht, J.; Codony-Servat, J.; Codony-Servat, C.; Ito, M.; Rosell, R. STAT3 as a potential immunotherapy biomarker in oncogene-addicted non-small cell lung cancer. Ther. Adv. Med. Oncol. 2018, 10, 1758835918763744.

    Article  Google Scholar 

  60. Casey, S. C.; Baylot, V.; Felsher, D. W. The MYC oncogene is a global regulator of the immune response. Blood 2018, 131, 2007–2015.

    Article  CAS  Google Scholar 

  61. Weber, R.; Fleming, V.; Hu, X. Y.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front. Immunol. 2018, 9, 1310.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic and Applied Basic Research Foundation of Guangdong Province (No. 2020A1515111204), the Fundamental Research Funds for the Central Universities (No. 2020ZYGXZR099), the Recruitment Program of Global Experts, the National Natural Science Foundation of China (No. 82172080). We would like to thank the Research Core Facilities at the South China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Liu, Z., Lin, G. et al. Systemic delivery of gemcitabine analogue and STAT3 siRNA promotes antitumor immunity against melanoma. Nano Res. 15, 9057–9072 (2022). https://doi.org/10.1007/s12274-022-4525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4525-x

Keywords

Navigation