Skip to main content
Log in

CMK-3 modified separator for ultra-high stability performance Cu1.8Se aluminum batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rechargeable aluminum batteries (RABs) are a popular energy storage device because of its safety and environmental protection. As cathode materials of RABs, transition metal oxide, sulfide, and selenide have become the research hotspot. In this work, we have successfully prepared CuO, Cu1.8S, and Cu1.8Se electrode materials. Among them, although Cu1.8Se had a relatively higher initial discharge capacity, all of these products had severe capacity degradation in terms of cycling and rate performance. Furthermore, for solving the problem of capacity decline, CMK-3 modified separator was used to make the Cu1.8Se cathode material more stable, thus improving cycling and rate performance. It can be confirmed by ex situ X-ray photoelectron spectroscopy (XPS) that both Cu and Se elements underwent reversible redox reactions during the charging/discharging process. Density functional theory was implemented to study the energy storage mechanism of CumX (X = O, S, Se). The results showed that Cu1.8S and Cu1.8Se mainly relied on AlCl4 for energy storage, and the intercalation/de-intercalation of Al3+ occurred during the charge/discharge process in CuO material. Consequently, the optimized Cu1.8Se/CMK-3@GF/C/Al revealed an outstanding rate capability (977.83 mAh·g−1 at 0.5 A·g−1) and long cyclic stability (retention of 478.77 mAh·g−1 after 500 cycles at 1.0 A·g−1). Compared to previously reported cathode materials of RABs, this type of battery displays great superiority in terms of rate and cycling stability. This research also provides a novel approach to suppress the shuttle effect of active species for advanced clean energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  CAS  Google Scholar 

  3. Yang, Z.; Zhong, J. J.; Feng, J. M.; Li, J. L.; Kang, F. Y. Highly reversible anion redox of manganese-based cathode material realized by electrochemical ion exchange for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2103594.

    Article  CAS  Google Scholar 

  4. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  5. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  6. Wang, X. R.; Tan, G. Q.; Bai, Y.; Wu, F.; Wu, C. Multi-electron reaction materials for high-energy-density secondary batteries: Current status and prospective. Electrochem. Energy Rev. 2021, 4, 35–66.

    Article  CAS  Google Scholar 

  7. Huo, X. G.; Zhong, J. J.; Yang, Z.; Feng, J. M.; Li, J. L.; Kang, F. Y. In situ preparation of MXenes in ambient-temperature organic ionic liquid aluminum batteries with ultrastable cycle performance. ACS Appl. Mater. Interfaces 2021, 13, 55112–55122.

    Article  CAS  Google Scholar 

  8. Jayaprakash, N.; Das, S. K.; Archer, L. A. The rechargeable aluminum-ion battery. Chem. Commun. 2011, 47, 12610–12612.

    Article  CAS  Google Scholar 

  9. Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624.

    Article  CAS  Google Scholar 

  10. Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R. Y.; Knipping, E.; Peters, W.; Drillet, J. F.; Passerini, S.; Hahn, R. An overview and future perspectives of aluminum batteries. Adv. Mater. 2016, 28, 7564–7579.

    Article  CAS  Google Scholar 

  11. Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.

    Article  CAS  Google Scholar 

  12. Yu, X. Z.; Wang, B.; Gong, D. C.; Xu, Z.; Lu, B. G. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv. Mater. 2017, 29, 1604118.

    Article  Google Scholar 

  13. Sun, H. B.; Wang, W.; Yu, Z. J.; Yuan, Y.; Wang, S.; Jiao, S. Q. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun. 2015, 51, 11892–11895.

    Article  CAS  Google Scholar 

  14. Jiao, H. D.; Wang, C.; Tu, J. G.; Tian, D. H.; Jiao, S. Q. A rechargeable Al-ion battery: Al/molten AlCl3-urea/graphite. Chem. Commun. 2017, 53, 2331–2334.

    Article  CAS  Google Scholar 

  15. Rani, J. V.; Kanakaiah, V.; Dadmal, T.; Rao, M. S.; Bhavanarushi, S. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery. J. Electrochem. Soc. 2013, 160, A1781–A1784.

    Article  CAS  Google Scholar 

  16. Jiao, S. Q.; Lei, H. P.; Tu, J. G.; Zhu, J.; Wang, J. X.; Mao, X. H. An industrialized prototype of the rechargeable Al/AlCl3−[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 2016, 109, 276–281.

    Article  CAS  Google Scholar 

  17. Tu, J. G.; Wang, J. X.; Li, S. J.; Song, W. L.; Wang, M. Y.; Zhu, H. M.; Jiao, S. Q. High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale 2019, 11, 12537–12546.

    Article  CAS  Google Scholar 

  18. Wang, P.; Chen, H. S.; Li, N.; Zhang, X. Y.; Jiao, S. Q.; Song, W. L.; Fang, D. N. Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Mater. 2018, 13, 103–111.

    Article  Google Scholar 

  19. Wang, H. L.; Bai, Y.; Chen, S.; Luo, X. Y.; Wu, C.; Wu, F.; Lu, J.; Amine, K. Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl. Mater. Interfaces 2015, 7, 80–84.

    Article  CAS  Google Scholar 

  20. Wang, H. L.; Bi, X. X.; Bai, Y.; Wu, C.; Gu, S. C.; Chen, S.; Wu, F.; Amine, K.; Lu, J. Open-structured V2O5·nH2O nanoflakes as highly reversible cathode material for monovalent and multivalent intercalation batteries. Adv. Energy Mater. 2017, 7, 1602720.

    Article  Google Scholar 

  21. Wang, H. L.; Gu, S. C.; Bai, Y.; Chen, S.; Wu, F.; Wu, C. High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS Appl. Mater. Interfaces 2016, 8, 27444–27448.

    Article  CAS  Google Scholar 

  22. Liu, S.; Hu, J. J.; Yan, N. F.; Pan, G. L.; Li, G. R.; Gao, X. P. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ. Sci. 2012, 5, 9743–9746.

    Article  CAS  Google Scholar 

  23. Liu, Y. Y.; Sang, S. B.; Wu, Q. M.; Lu, Z. G.; Liu, K. Y.; Liu, H. T. The electrochemical behavior of Cl assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries. Electrochim. Acta 2014, 143, 340–346.

    Article  CAS  Google Scholar 

  24. Kumar, S.; Satish, R.; Verma, V.; Ren, H.; Kidkhunthod, P.; Manalastas, W.; Srinivasan, M. Investigating FeVO4 as a cathode material for aqueous aluminum-ion battery. J. Power Sources 2019, 426, 151–161.

    Article  CAS  Google Scholar 

  25. Xiao, X.; Wang, M. Y.; Tu, J. G.; Luo, Y. W.; Jiao, S. Q. Metal-organic framework-derived Co3O4@MWCNTs polyhedron as cathode material for a high-performance aluminum-ion battery. ACS Sustainable Chem. Eng. 2019, 7, 16200–16208.

    Article  CAS  Google Scholar 

  26. Gao, T.; Li, X. G.; Wang, X. W.; Hu, J. K.; Han, F. D.; Fan, X. L.; Suo, L. M.; Pearse, A. J.; Lee, S. B.; Rubloff, G. W. et al. A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew. Chem., Int. Ed. 2016, 55, 9898–9901.

    Article  CAS  Google Scholar 

  27. Wang, S.; Jiao, S. Q.; Wang, J. X.; Chen, H. S.; Tian, D. H.; Lei, H. P.; Fang, D. N. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 2017, 11, 469–477.

    Article  Google Scholar 

  28. Zhao, Z. C.; Hu, Z. Q.; Li, Q.; Li, H. S.; Zhang, X.; Zhuang, Y. D.; Wang, F.; Yu, G. H. Designing two-dimensional WS2 layered cathode for high-performance aluminum-ion batteries: From micro-assemblies to insertion mechanism. Nano Today 2020, 32, 100870.

    Article  CAS  Google Scholar 

  29. Wang, S.; Yu, Z. J.; Tu, J. G.; Wang, J. X.; Tian, D. H.; Liu, Y. J.; Jiao, S. Q. A novel aluminum-ion battery: Al/AlCl3−[EMIm]Cl/Ni3S2@graphene. Adv. Energy Mater. 2016, 6, 1600137.

    Article  Google Scholar 

  30. Geng, L. X.; Lv, G. C.; Xing, X. B.; Guo, J. C. Cheminform abstract: Reversible electrochemical intercalation of aluminum in Mo6S8. Cheminform 2015, 46, 4926–4929.

    Article  Google Scholar 

  31. Yu, Z. J.; Kang, Z. P.; Hu, Z. Q.; Lu, J. H.; Zhou, Z. G.; Jiao, S. Q. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem. Commun. 2016, 52, 10427–10430.

    Article  CAS  Google Scholar 

  32. Hu, Y. X.; Luo, B.; Ye, D. L.; Zhu, X. B.; Lyu, M. Q.; Wang, L. Z. An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries. Adv. Mater. 2017, 29, 1606132.

    Article  Google Scholar 

  33. Tan, B.; Han, S. H.; Luo, W. B.; Chao, Z. S.; Fan, J. C.; Wang, M. Y. Synthesis of RGO-supported layered MoS2 with enhanced electrochemical performance for aluminum ion batteries. J. Alloys Compd. 2020, 841, 155732.

    Article  CAS  Google Scholar 

  34. Li, Z. Y.; Wang, X. X.; Li, X. X.; Zhang, W. M. Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al−Se batteries. Chem. Eng. J. 2020, 400, 126000.

    Article  CAS  Google Scholar 

  35. Li, Z. Y.; Wang, X. X.; Zhang, W. M.; Yang, S. P. Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chem. Eng. J. 2020, 398, 125679.

    Article  CAS  Google Scholar 

  36. Cai, T. H.; Zhao, L. M.; Hu, H. Y.; Li, T. G.; Li, X. C.; Guo, S.; Li, Y. P.; Xue, Q. Z.; Xing, W.; Yan, Z. F. et al. Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy Environ. Sci. 2018, 11, 2341–2347.

    Article  CAS  Google Scholar 

  37. Guan, W.; Wang, L. J.; Lei, H. P.; Tu, J. G.; Jiao, S. Q. Sb2Se3 nanorods with N-doped reduced graphene oxide hybrids as high-capacity positive electrode materials for rechargeable aluminum batteries. Nanoscale 2019, 11, 16437–16444.

    Article  CAS  Google Scholar 

  38. Jiang, J. L.; Li, H.; Fu, T.; Hwang, B. J.; Li, X.; Zhao, J. B. One-dimensional Cu2−xSe nanorods as the cathode material for high-performance aluminum-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 17942–17949.

    Article  CAS  Google Scholar 

  39. Zhao, Z. C.; Hu, Z. Q.; Liang, H. Y.; Li, S. D.; Wang, H. T.; Gao, F.; Sang, X. C.; Li, H. S. Nanosized MoSe2@carbon matrix: A stable host material for the highly reversible storage of potassium and aluminum ions. ACS Appl. Mater. Interfaces 2019, 11, 44333–44341.

    Article  CAS  Google Scholar 

  40. Huo, X. G.; Liu, J.; Li, J. L.; Zhang, B.; Zhang, Y.; Yu, Y.; Kang, F. Y. Hexagonal composite CuSe@C as a positive electrode for high-performance aluminum batteries. ACS Appl. Energy Mater. 2020, 3, 11445–11455.

    Article  CAS  Google Scholar 

  41. Lei, H. P.; Wang, M. Y.; Tu, J. G.; Jiao, S. Q. Single-crystal and hierarchical VSe2 as an aluminum-ion battery cathode. Sustainable Energy Fuels 2019, 3, 2717–2724.

    Article  CAS  Google Scholar 

  42. Zhang, Y.; Zhang, B.; Li, J. L.; Liu, J.; Huo, X. G.; Kang, F. Y. SnSe nano-particles as advanced positive electrode materials for rechargeable aluminum-ion batteries. Chem. Eng. J. 2021, 403, 126377.

    Article  CAS  Google Scholar 

  43. Li, G. Y.; Kou, M. Y.; Tu, J. G.; Luo, Y. W.; Wang, M. Y.; Jiao, S. Q. Coordination interaction boosts energy storage in rechargeable Al battery with a positive electrode material of CuSe. Chem. Eng. J. 2021, 421, 127792.

    Article  CAS  Google Scholar 

  44. Li, J. J.; Liu, W. M.; Yu, Z. Z.; Deng, J. Q.; Zhong, S. K.; Xiao, Q.; Chen, F. M.; Yan, D. L. N-doped C@ZnSe as a low cost positive electrode for aluminum-ion batteries: Better electrochemical performance with high voltage platform of ∼ 1.8 V and new reaction mechanism. Electrochim. Acta 2021, 370, 137790.

    Article  CAS  Google Scholar 

  45. Lv, W. R.; Wu, G. H.; Li, X. X.; Li, J. L.; Li, Z. Y. Two-dimensional V2C@Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Energy Storage Mater. 2022, 46, 138–146.

    Article  Google Scholar 

  46. Zhang, X. F.; Zhang, G. H.; Wang, S.; Li, S. J.; Jiao, S. Q. Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries. J. Mater. Chem. A 2018, 6, 3084–3090.

    Article  CAS  Google Scholar 

  47. Wang, S.; Tu, J. G.; Xiao, J. S.; Zhu, J.; Jiao, S. Q. 3D skeleton nanostructured Ni3S2/Ni foam@RGO composite anode for high-performance dual-ion battery. J. Energy Chem. 2019, 28, 144–150.

    Article  Google Scholar 

  48. Zhang, X. F.; Wang, S.; Tu, J. G.; Zhang, G. H.; Li, S. J.; Tian, D. H.; Jiao, S. Q. Flower-like vanadium suflide/reduced graphene oxide composite: An energy storage material for aluminum-ion batteries. ChemSusChem 2018, 11, 709–715.

    Article  CAS  Google Scholar 

  49. Xing, W.; Li, X. C.; Cai, T. H.; Zhang, Y.; Bai, P.; Xu, J.; Hu, H.; Wu, M. B.; Xue, Q. Z.; Zhao, Y. et al. Layered double hydroxides derived NiCo-sulfide as a cathode material for aluminum ion batteries. Electrochim. Acta 2020, 344, 136174.

    Article  CAS  Google Scholar 

  50. Wu, S. C.; Ai, Y. F.; Chen, Y. Z.; Wang, K. Y.; Yang, T. Y.; Liao, H. J.; Su, T. Y.; Tang, S. Y.; Chen, C. W.; Wu, D. C. et al. High-performance rechargeable aluminum-selenium battery with a new deep eutectic solvent electrolyte: Thiourea-AlCl3. ACS Appl. Mater. Interfaces 2020, 12, 27064–27073.

    Article  CAS  Google Scholar 

  51. Kao, Y. T.; Patil, S. B.; An, C. Y.; Huang, S. K.; Lin, J. C.; Lee, T. S.; Lee, Y. C.; Chou, H. L.; Chen, C. W.; Chang, Y. J. et al. A quinone-based electrode for high-performance rechargeable aluminum-ion batteries with a low-cost AlCl3/Urea ionic liquid electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 25853–25860.

    Article  CAS  Google Scholar 

  52. Li, G. Y.; Tu, J. G.; Wang, M. Y.; Jiao, S. Q. Cu3P as a novel cathode material for rechargeable aluminum-ion batteries. J. Mater. Chem. A 2019, 7, 8368–8375.

    Article  CAS  Google Scholar 

  53. Zhang, B.; Zhang, Y.; Li, J. L.; Liu, J.; Huo, X. G.; Kang, F. Y. In situ growth of metal-organic framework-derived CoTe2 nanoparticles@nitrogen-doped porous carbon polyhedral composites as novel cathodes for rechargeable aluminum-ion batteries. J. Mater. Chem. A 2020, 8, 5535–5545.

    Article  CAS  Google Scholar 

  54. Yu, Z. J.; Jiao, S. Q.; Tu, J. G.; Luo, Y. W.; Song, W. L.; Jiao, H. D.; Wang, M. Y.; Chen, H. S.; Fang, D. N. Rechargeable nickel telluride/aluminum batteries with high capacity and enhanced cycling performance. ACS Nano 2020, 14, 3469–3476.

    Article  CAS  Google Scholar 

  55. Li, Z. Y.; Liu, J.; Huo, X. G.; Li, J. L.; Kang, F. Y. Novel one-dimensional hollow carbon nanotubes/selenium composite for highperformance Al-Se batteries. ACS Appl. Mater. Interfaces 2019, 11, 45709–45716.

    Article  CAS  Google Scholar 

  56. Zhuang, R. Y.; Miao, G.; Huang, Z. L.; Zhang, Q. Q.; Wu, J. C.; Yang, J. H. Non-stoichiometric CoS1.097 nanoparticles prepared from CoAl-layered double hydroxide and MOF template as cathode materials for aluminum-ion batteries. J. Energy Chem. 2021, 54, 639–643.

    Article  CAS  Google Scholar 

  57. Zhuang, R. Y.; Huang, Z. L.; Wang, S. X.; Qiao, J.; Wu, J. C.; Yang, J. H. Binder-free cobalt sulfide@carbon nanofibers composite films as cathode for rechargeable aluminum-ion batteries. Chem. Eng. J. 2021, 409, 128235.

    Article  CAS  Google Scholar 

  58. Huo, X. G.; Wang, X. X.; Li, Z. Y.; Liu, J.; Li, J. L. Two-dimensional composite of D-Ti3C2Tx@S@TiO2 (MXene) as the cathode material for aluminum-ion batteries. Nanoscale 2020, 12, 3387–3399.

    Article  CAS  Google Scholar 

  59. Lei, H. P.; Jiao, S. Q.; Tu, J. G.; Song, W. L.; Zhang, X. F.; Wang, M. Y.; Li, S. J.; Chen, H. S.; Fang, D. N. Modified separators for rechargeable high-capacity selenium-aluminium batteries. Chem. Eng. J. 2020, 385, 123452.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52102233) and Nature Science Foundation of Hebei Province (No. E2021201006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenming Zhang or Zhanyu Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, M., Lv, W. et al. CMK-3 modified separator for ultra-high stability performance Cu1.8Se aluminum batteries. Nano Res. 15, 8136–8145 (2022). https://doi.org/10.1007/s12274-022-4517-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4517-x

Keywords

Navigation