Skip to main content
Log in

Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The high electrical conductivity makes it possible for one-dimensional (1D) carbon materials to be used as the promising anodes for potassium ion batteries (PIBs), however, the sluggish diffusion kinetics caused by large-sized potassium ions (K+) limits their practical applications in energy storage systems. In this work, hollow carbon nanorods were rationally designed as a case to verify the superiority of 1D hollow structure to improve the diffusion kinetics of K+. Simultaneously, edge-N (pyridinic-N and pyrrolic-N) atoms were also introduced into 1D hollow carbon structure, which can provide ample active sites and defects in graphitic lattices to adsorb K+, providing extra capacitive storage capacity. As expected, the optimized edge-N doped hollow carbon nanorods (ENHCRs) exhibits a high reversible capacity of 544 mAh·g−1 at 0.1 A·g−1 after 200 cycles. Even at 5 A·g−1, it displays a long-term cycling stability with 255 mAh·g−1 over 10,000 cycles. The electrochemical measurements confirm that the hollow structure is favorable to improve the transfer kinetics of K+ during cycling. And the theoretical calculations demonstrate that edge-N doping can enhance the local electronegativity of graphitic lattices to adsorb much more K+, where edge-N doping synergizes with 1D hollow structure to achieve enhanced K+-storage performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, S. H.; Li, X. Y.; Zhang, W. S.; Xiang, Y.; Li, T. S.; Niu, X. B.; Chen, J. S.; Yan, Q. Y. Bilateral interfaces in In2Se3−CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021, 15, 13307–13318.

    Article  CAS  Google Scholar 

  2. Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. G. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.

    Article  Google Scholar 

  3. Zhou, L.; Cao, Z.; Wahyudi, W.; Zhang, J.; Hwang, J. Y.; Cheng, Y.; Wang, L. M.; Cavallo, L.; Anthopoulos, T.; Sun, Y. K. et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett. 2020, 5, 766–776.

    Article  CAS  Google Scholar 

  4. Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

    Article  CAS  Google Scholar 

  5. Wu, Y. M.; Zhao, H. T.; Wu, Z. G.; Yue, L. C.; Liang, J.; Liu, Q.; Luo, Y. L.; Gao, S. Y.; Lu, S. Y.; Chen, G. et al. Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 2021, 34, 483–507.

    Article  Google Scholar 

  6. Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.

    Article  Google Scholar 

  7. Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2022, 14, 1018–1026.

    Article  Google Scholar 

  8. Wu, J.; Zhang, X. X.; Li, Z.; Yang, C. F.; Zhong, W. D.; Li, W. L.; Zhang, C. Z.; Yang, N. J.; Zhang, Q.; Li, X. K. Toward high-performance capacitive potassium-ion storage: A superior anode material from silicon carbide-derived carbon with a well-developed pore structure. Adv. Funct. Mater. 2020, 30, 2004348.

    Article  CAS  Google Scholar 

  9. Xu, H. R.; Zhao, L. L.; Liu, X. M.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Metal-organic-framework derived core-shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188.

    Article  CAS  Google Scholar 

  10. Adams, R. A.; Varma, A.; Pol, V. G. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv. Energy Mater. 2019, 9, 1900550.

    Article  Google Scholar 

  11. Wang, G.; Yu, M. H.; Feng, X. L. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.

    Article  CAS  Google Scholar 

  12. Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

    Article  Google Scholar 

  13. Xiao, L. F.; Lu, H. Y.; Fang, Y. J.; Sushko, M. L.; Cao, Y. L.; Ai, X. P.; Yang, H. X.; Liu, J. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 2018, 8, 1703238.

    Article  Google Scholar 

  14. Lu, J.; Wang, C. L.; Yu, H. L.; Gong, S. P.; Xia, G. L.; Jiang, P.; Xu, P. P.; Yang, K.; Chen, Q. W. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv. Funct. Mater. 2019, 29, 1906126.

    Article  CAS  Google Scholar 

  15. Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

    Article  CAS  Google Scholar 

  16. Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

    Article  Google Scholar 

  17. Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

    Article  CAS  Google Scholar 

  18. Xiao, Q. H. Q.; Li, G. R.; Li, M. J.; Liu, R. P.; Li, H. B.; Ren, P. F.; Dong, Y.; Feng, M.; Chen, Z. W. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium-sulfur batteries. J. Energy Chem. 2020, 44, 61–67.

    Article  Google Scholar 

  19. Wang, J. M.; Wang, B. B.; Liu, X. J.; Bai, J. T.; Wang, H.; Wang, G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 2020, 382, 123050.

    Article  CAS  Google Scholar 

  20. Liu, C.; Xiao, N.; Li, H. J.; Dong, Q.; Wang, Y. W.; Li, H. Q.; Wang, S. F.; Zhang, X. Y.; Qiu, J. S. Nitrogen-doped soft carbon frameworks built of well-interconnected nanocapsules enabling a superior potassium-ion batteries anode. Chem. Eng. J. 2020, 382, 121759.

    Article  CAS  Google Scholar 

  21. Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.

    Article  CAS  Google Scholar 

  22. Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578–14583.

    Article  CAS  Google Scholar 

  23. Hu, X.; Zhong, G. B.; Li, J. W.; Liu, Y. J.; Yuan, J.; Chen, J. X.; Zhan, H. B.; Wen, Z. H. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ. Sci. 2020, 13, 2431–2440.

    Article  Google Scholar 

  24. Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

    Article  CAS  Google Scholar 

  25. Yuan, Y.; Chen, Z. W.; Yu, H. X.; Zhang, X. K.; Liu, T. T.; Xia, M. T.; Zheng, R. T.; Shui, M.; Shu, J. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 2020, 32, 65–90.

    Article  Google Scholar 

  26. Chu, K. N.; Zhang, X. J.; Yang, Y.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Zheng, F. C.; Chen, Q. W. Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon 2021, 184, 277–286.

    Article  CAS  Google Scholar 

  27. Hong, W. W.; Zhang, Y.; Yang, L.; Tian, Y.; Ge, P.; Hu, J. G.; Wei, W. F.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 2019, 65, 104038.

    Article  CAS  Google Scholar 

  28. Gong, J.; Zhao, G. Q.; Feng, J. K.; An, Y. L.; Li, T. T.; Zhang, L.; Li, B.; Qian, Z. Controllable phosphorylation strategy for freestanding phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 2020, 14, 14057–14069.

    Article  CAS  Google Scholar 

  29. Chen, L.; Bai, L. L.; Yeo, J.; Wei, T.; Chen, W. S.; Fan, Z. J. Wood-derived carbon with selectively introduced C=O groups toward stable and high capacity anodes for sodium storage. ACS Appl. Mater. Interfaces 2020, 12, 27499–27507.

    Article  CAS  Google Scholar 

  30. Thambiliyagodage, C. J.; Ulrich, S.; Araujo, P. T.; Bakker, M. G. Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon 2018, 134, 452–463.

    Article  CAS  Google Scholar 

  31. Iwase, K.; Ebner, K.; Diercks, J. S.; Saveleva, V. A.; Ünsal, S.; Krumeich, F.; Harada, T.; Honma, I.; Nakanishi, S.; Kamiya, K. et al. Effect of cobalt speciation and the graphitization of the carbon matrix on the CO2 electroreduction activity of Co/N-doped carbon materials. ACS Appl. Mater. Interfaces 2021, 13, 15122–15131.

    Article  CAS  Google Scholar 

  32. Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for highperformance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.

    Article  CAS  Google Scholar 

  33. Li, J.; Yu, L.; Li, Y. P.; Wang, G. R.; Zhao, L. P.; Peng, B.; Zeng, S. Y.; Shi, L.; Zhang, G. Q. Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale 2021, 13, 692–699.

    Article  CAS  Google Scholar 

  34. Wu, H.; Lu, S. Y.; Xu, S. Y.; Zhao, J.; Wang, Y. K.; Huang, C.; Abdelkader, A.; Wang, W. A.; Xi, K.; Guo, Y. Z. et al. Blowing iron chalcogenides into two-dimensional flaky hybrids with superior cyclability and rate capability for potassium-ion batteries. ACS Nano 2021, 15, 2506–2519.

    Article  CAS  Google Scholar 

  35. Li, Q.; Zhang, Y. N.; Feng, S.; Liu, D.; Wang, G. X.; Tan, Q. L.; Jiang, S. T.; Yuan, J. J. N, S self-doped porous carbon with enlarged interlayer distance as anode for high performance sodium ion batteries. Int. J. Energy Res. 2021, 45, 7082–7092.

    Article  CAS  Google Scholar 

  36. Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

    Article  Google Scholar 

  37. Wang, B.; Yuan, F.; Yu, Q. Y.; Li, W.; Sun, H. L.; Zhang, L. P.; Zhang, D.; Wang, Q. J.; Lai, F. L.; Wang, W. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Mater. 2021, 38, 329–337.

    Article  Google Scholar 

  38. Park, S.; Jin, H. J.; Yun, Y. S. Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries. ACS Sustainable Chem. Eng. 2020, 8, 17697–17706.

    Article  CAS  Google Scholar 

  39. Yang, S. H.; Park, S. K.; Kang, Y. C. MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 2021, 13, 9.

    Article  Google Scholar 

  40. Yang, S. H.; Park, S. K.; Kang, Y. C. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem. Eng. J. 2019, 370, 1008–1018.

    Article  CAS  Google Scholar 

  41. He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

    Article  CAS  Google Scholar 

  42. Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.

    Article  Google Scholar 

  43. Chen, Y. X.; Shi, L. L.; Guo, S. S.; Yuan, Q.; Chen, X. H.; Zhou, J. S.; Song, H. H. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. J. Mater. Chem. A 2017, 5, 19866–19874.

    Article  CAS  Google Scholar 

  44. Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

    Article  CAS  Google Scholar 

  45. Xu, Y.; Wang, C. L.; Niu, P.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Zheng, F. C.; Chen, Q. W. Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. J. Mater. Chem. A 2021, 9, 16150–16159.

    Article  CAS  Google Scholar 

  46. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

    Article  Google Scholar 

  47. Chen, J. G.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor. Adv. Energy Mater. 2019, 9, 1803894.

    Article  Google Scholar 

  48. Lai, C. L.; Zhang, Z. Z.; Xu, Y. F.; Liao, J. Y.; Xu, Z. H.; Yi, Z. Y.; Xu, J. Y.; Bao, J. C.; Zhou, X. S. A general strategy for embedding ultrasmall CoMx nanocrystals (M = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. J. Mater. Chem. A 2021, 9, 1487–1494.

    Article  CAS  Google Scholar 

  49. Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Fast potassium storage in hierarchical Ca0.5Ti2(PO4)3@C microspheres enabling high-performance potassium-ion capacitors. Adv. Funct. Mater. 2018, 28, 1802684.

    Article  Google Scholar 

  50. Li, J. W.; Hu, X.; Zhong, G. B.; Liu, Y. J.; Ji, Y. X.; Chen, J. X.; Wen, Z. H. A general self-sacrifice template strategy to 3D heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 2021, 13, 131.

    Article  CAS  Google Scholar 

  51. Ma, X. Q.; Xiao, N.; Xiao, J.; Song, X. D.; Guo, H. D.; Wang, Y. T.; Zhao, S. J.; Zhong, Y. P.; Qiu, J. S. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 2021, 179, 33–41.

    Article  CAS  Google Scholar 

  52. Qian, Y.; Li, Y.; Pan, Z.; Tian, J.; Lin, N.; Qian, Y. T. Hydrothermal “disproportionation” of biomass into oriented carbon microsphere anode and 3D porous carbon cathode for potassium ion hybrid capacitor. Adv. Funct. Mater. 2021, 31, 2103115.

    Article  CAS  Google Scholar 

  53. Ruan, J. F.; Wu, X.; Wang, Y.; Zheng, S. Y.; Sun, D. L.; Song, Y.; Chen, M. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A 2019, 7, 19305–19315.

    Article  CAS  Google Scholar 

  54. Tan, H.; Du, X. Q.; Zhou, R.; Hou, Z.; Zhang, B. Rational design of microstructure and interphase enables high-capacity and long-life carbon anodes for potassium ion batteries. Carbon 2021, 176, 383–389.

    Article  CAS  Google Scholar 

  55. Tong, H. G.; Wang, C. L.; Lu, J.; Chen, S.; Yang, K.; Huang, M. X.; Yuan, Q.; Chen, Q. W. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020, 16, 2002771.

    Article  CAS  Google Scholar 

  56. Xu, Y.; Ruan, J. F.; Pang, Y. P.; Sun, H.; Liang, C.; Li, H. W.; Yang, J. H.; Zheng, S. Y. Homologous strategy to construct high-performance coupling electrodes for advanced potassium-ion hybrid capacitors. Nano-Micro Lett. 2021, 13, 14.

    Article  Google Scholar 

  57. Yang, B. J.; Chen, J. T.; Liu, L. Y.; Ma, P. J.; Liu, B.; Lang, J. W.; Tang, Y.; Yan, X. B. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater 2019, 23, 522–529.

    Article  Google Scholar 

  58. Chen, J. M.; Cheng, Y.; Zhang, Q. B.; Luo, C.; Li, H. Y.; Wu, Y.; Zhang, H. H.; Wang, X.; Liu, H. D.; He, X. et al. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus Co-doped hollow porous bowl-like carbon anodes. Adv. Funct. Mater. 2021, 31, 2007158.

    Article  CAS  Google Scholar 

  59. Jiang, Y.; Yang, Y.; Xu, R.; Cheng, X. L.; Huang, H. J.; Shi, P. C.; Yao, Y.; Yang, H.; Li, D. J.; Zhou, X. F. et al. Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 2021, 15, 10217–10227.

    Article  CAS  Google Scholar 

  60. Zhang, M.; Shoaib, M.; Fei, H. L.; Wang, T.; Zhong, J.; Fan, L.; Wang, L.; Luo, H. Y.; Tan, S.; Wang, Y. Y. et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 2019, 9, 1901663.

    Article  CAS  Google Scholar 

  61. Li, X. C.; Wang, H. L.; Zhang, W. Z.; Wei, W. R.; Liao, R. X.; Shi, J.; Huang, M. H.; Liu, S.; Shi, Z. C. High potassium ion storage capacity with long cycling stability of sustainable oxygen-rich carbon nanosheets. Nanoscale 2021, 13, 2389–2398.

    Article  Google Scholar 

  62. Zhang, Y. L.; Zhao, R.; Li, Y. Q.; Zhu, X. X.; Zhang, B.; Lang, X. Y.; Zhao, L. J.; Jin, B.; Zhu, Y. F.; Jiang, Q. Potassium-ion batteries with novel N, O enriched corn silk-derived carbon as anode exhibiting excellent rate performance. J. Power Sources 2021, 481, 228644.

    Article  CAS  Google Scholar 

  63. Zhao, R. Z.; Di, H. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Wang, C. X.; Yin, L. W. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246–257.

    Article  CAS  Google Scholar 

  64. Huang, H. J.; Xu, R.; Feng, Y. Z.; Zeng, S. F.; Jiang, Y.; Wang, H. J.; Luo, W.; Yu, Y. Sodium/potassium-ion batteries: Boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, 1904320.

    Article  CAS  Google Scholar 

  65. Liu, Y. Z.; Yang, C. H.; Pan, Q. C.; Li, Y. P.; Wang, G.; Ou, X.; Zheng, F. H.; Xiong, X. H.; Liu, M. L.; Zhang, Q. Y. Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 2018, 6, 15162–15169.

    Article  CAS  Google Scholar 

  66. Xu, S. K.; Cai, L.; Niu, P.; Li, Z. Q.; Wei, L. Z.; Yao, G.; Wang, C. L.; Zheng, F. C.; Chen, Q. W. The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon 2021, 178, 256–264.

    Article  CAS  Google Scholar 

  67. Shao, M. J.; Li, C. X.; Li, T.; Zhao, H.; Yu, W. Q.; Wang, R. T.; Zhang, J.; Yin, L. W. Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal-organic framework derived porous carbon microsheets anode. Adv. Funct. Mater. 2020, 30, 2006561.

    Article  CAS  Google Scholar 

  68. Geng, S. T.; Zhou, T.; Jia, M. Y.; Shen, X. Y.; Gao, P. B.; Tian, S.; Zhou, P. F.; Liu, B.; Zhou, J.; Zhuo, S. P. et al. Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ. Sci. 2021, 14, 3184–3193.

    Article  CAS  Google Scholar 

  69. Dong, S. Y.; Li, Z. F.; Xing, Z. Y.; Wu, X. Y.; Ji, X. L.; Zhang, X. G. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl. Mater. Interfaces 2018, 10, 15542–15547.

    Article  CAS  Google Scholar 

  70. Fan, L.; Lin, K. R.; Wang, J.; Ma, R. F.; Lu, B. G. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 2018, 30, 1800804.

    Article  Google Scholar 

  71. Comte, A. L.; Reynier, Y.; Vincens, C.; Leys, C.; Azaïs, P. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 2017, 363, 34–43.

    Article  Google Scholar 

  72. Qiu, D. P.; Guan, J. Y.; Li, M.; Kang, C. H.; Wei, J. Y.; Li, Y.; Xie, Z. Y.; Wang, F.; Yang, R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.

    Article  Google Scholar 

  73. Wang, Y. X.; Zhang, Z. Y.; Wang, G. X.; Yang, X. Y.; Sui, Y. M.; Du, F.; Zou, B. Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 2019, 4, 1394–1401.

    Article  CAS  Google Scholar 

  74. Yu, L.; Wang, G. R.; Gao, J. Y.; Li, J.; Peng, B.; Zhang, G. Q. Sacrificial nanowire catalyzed polymerization process generates hierarchical MoSe2 grafted carbonaceous nanotubes for superior potassium ion storage. ACS Appl. Energy Mater. 2021, 4, 6757–6767.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The density functional theory (DFT) calculations were completed on the supercomputing system in the Supercomputing Center of the University of Science and Technology of China. This work was supported by the National Natural Science Foundation of China (Nos. 21601003, 21972145, 22102169, and 52172172), Natural Science Foundation of Anhui Province (No. 2108085MB57), and China Postdoctoral Science Foundation funded project (No. BH2340000137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulin Min or Fangcai Zheng.

Electronic Supplementary Material

12274_2022_4496_MOESM1_ESM.pdf

Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, P., Yang, Y., Li, Z. et al. Rational design of a hollow porous structure for enhancing diffusion kinetics of K ions in edge-nitrogen doped carbon nanorods. Nano Res. 15, 8109–8117 (2022). https://doi.org/10.1007/s12274-022-4496-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4496-y

Keywords

Navigation