Skip to main content
Log in

In-plane grain boundary induced defect state in hierarchical NiCo-LDH and effect on battery-type charge storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Domain boundaries are regarded as the effective active sites for electrochemical energy storage materials due to defects enrichment therein. However, layered double hydroxides (LDHs) tend to grow into single crystalline nano sheets due to their unique two-dimentional (2D) lattice structure. Previously, much efforts were made on the designing hierarchical structure to provide more exposed electroactive sites as well as accelerate the mass transfer. Herein, we demonstrate a strategy to introduce low angle grain boundary (LAGB) in the flakes of Ni/Co layered double hydroxides (NiCo-LDHs). These defect-rich nano flakes were self-assembled into hydrangea-like spheres that further constructed hollow cage structure. Both the formation of hierarchical structure and grain boundaries are interpreted with the synergistic effect of Ni2+/Co2+ ratio in an “etching-growth” process. The domain boundary defect also results in the preferential formation of oxygen vacancy (Vo). Additionally, density functional theory (DFT) calculation reveals that Co substitution is a critical factor for the formation of adjacent lattice defects, which contributes to the formation of domains boundary. The fabricated battery-type Faradaic NiCo-LDH-2 electrode material exhibits significantly enhanced specific capacitance of 899 C·g−1 at a current density of 1 A·g−1. NiCo-LDH-2//AC asymmetric capacitor shows a maximum energy density of 101.1 Wh·kg−1 at the power density of 1.5 kW·kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

    CAS  Google Scholar 

  2. Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

    CAS  Google Scholar 

  3. Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

    CAS  Google Scholar 

  4. Chen, S. H.; Qiu, L.; Cheng, H. M. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 2020, 120, 2811–2878.

    CAS  Google Scholar 

  5. Fleischmann, S.; Mitchell, J. B.; Wang, R. C.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782.

    CAS  Google Scholar 

  6. Poonam; Sharma, K.; Arora, A.; Tripathi, S. K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825.

    Google Scholar 

  7. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

    Google Scholar 

  8. Kumar, S.; Saeed, G.; Zhu, L.; Hui, K. N.; Kim, N. H.; Lee, J. H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor:A review. Chem. Eng. J. 2021, 403, 126352.

    CAS  Google Scholar 

  9. Ye, S. H.; Wang, J. P.; Hu, J.; Chen, Z. D.; Zheng, L. R.; Fu, Y. H.; Lei, Y. Q.; Ren, X. Z.; He, C. X.; Zhang, Q. L. et al. Electrochemical construction of low-crystalline CoOOH nanosheets with short-range ordered grains to improve oxygen evolution activity. ACS Catal. 2021, 11, 6104–6112.

    CAS  Google Scholar 

  10. Zhao, M. M.; Zhao, Q. X.; Li, B.; Xue, H. G.; Pang, H.; Chen, C. Y. Recent progress in layered double hydroxide based materials for electrochemical capacitors: Design, synthesis and performance. Nanoscale 2017, 9, 15206–15225.

    CAS  Google Scholar 

  11. Chen, C.; Tao, L.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Wang, S. Y. Advanced exfoliation strategies for layered double hydroxides and applications in energy conversion and storage. Adv. Funct. Mater. 2020, 30, 1909832.

    CAS  Google Scholar 

  12. Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942.

    Google Scholar 

  13. Zhu, F. F.; Liu, W. J.; Liu, Y.; Shi, W. D. Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem. Eng. J. 2020, 383, 123150.

    CAS  Google Scholar 

  14. Lv, Z. J.; Zhong, Q.; Bu, Y. F. Controllable synthesis of Ni-Co nanosheets covered hollow box via altering the concentration of nitrate for high performance supercapacitor. Electrochim. Acta 2016, 215, 500–505.

    CAS  Google Scholar 

  15. Zhang, X. Y.; Liu, X. Q.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 2020, 4, 1900823.

    CAS  Google Scholar 

  16. Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer nife-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

    Google Scholar 

  17. Feng, B.; Lugg, N. R.; Kumamoto, A.; Ikuhara, Y.; Shibata, N. Direct observation of oxygen vacancy distribution across yttria-stabilized zirconia grain boundaries. Acs Nano 2017, 11, 11376–11382.

    CAS  Google Scholar 

  18. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    CAS  Google Scholar 

  19. Lee, Y. R.; Kim, J.; Ahn, W. S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680.

    CAS  Google Scholar 

  20. Yilmaz, G.; Yam, K. M.; Zhang, C.; Fan, H. J.; Ho, G. W. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv. Mater. 2017, 29, 1606814.

    Google Scholar 

  21. Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770–11775.

    CAS  Google Scholar 

  22. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    CAS  Google Scholar 

  23. Qu, C.; Zhao, B. T.; Jiao, Y.; Chen, D. C.; Dai, S. G.; Deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R. Q.; Liu, M. L. Functionalized bimetallic hydroxides derived from metal-organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability. ACS Energy Lett. 2017, 2, 1263–1269.

    CAS  Google Scholar 

  24. Ban, J. J.; Wen, X. H.; Xu, H. J.; Wang, Z.; Liu, X. H.; Cao, G. Q.; Shao, G. S.; Hu, J. H. Dual evolution in defect and morphology of single-atom dispersed carbon based oxygen electrocatalyst. Adv. Funct. Mater. 2021, 31, 2010472.

    CAS  Google Scholar 

  25. Liu, S. B.; Liu, K.; Chen, K. J.; Fu, J. W.; Li, H. J. W.; An, P. D.; Li, H. M.; Jia, C. K.; Xie, H. P.; Liu, H. et al. Tailoring the structure of supported 5-MnO2 nanosheets to raise pseudocapacitance by surface-modified carbon cloth. J. Power Sources 2020, 449, 227507.

    CAS  Google Scholar 

  26. Long, H. B.; Mao, S. C.; Liu, Y. N.; Zhang, Z.; Han, X. D. Microstructural and compositional design of Ni-based single crystalline superalloysd—A review. J. Alloys Compd. 2018, 743, 203–220.

    CAS  Google Scholar 

  27. Sutton, A. P.; Vitek, V. On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries. Philos. Trans. Royal Soc. A Math. Phys. Sci. 1983, 309, 37–54.

    CAS  Google Scholar 

  28. Najib, S.; Bakan, F.; Abdullayeva, N.; Bahariqushchi, R.; Kasap, S.; Franzò, G.; Sankir, M.; Sankir, N. D.; Mirabella, S.; Erdem, E. Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 2020, 12, 16162–16172.

    CAS  Google Scholar 

  29. Guan, X. H.; Huang, M. H.; Yang, L.; Wang, G. S.; Guan, X. Facial design and synthesis of CoS/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019, 372, 151–162.

    CAS  Google Scholar 

  30. Wang, W. H.; Yan, H. W.; Anand, U.; Mirsaidov, U. Visualizing the conversion of metal-organic framework nanoparticles into hollow layered double hydroxide nanocages. J. Am. Chem. Soc. 2021, 143, 1854–1862.

    CAS  Google Scholar 

  31. Xu, W. J.; Lyu, F.; Bai, Y. C.; Gao, A. Q.; Feng, J.; Cai, Z. X.; Yin, Y. D. Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction. Nano Energy 2018, 43, 110–116.

    CAS  Google Scholar 

  32. Liu, X.; Guo, R. T.; Ni, K.; Xia, F. J.; Niu, C. J.; Wen, B.; Meng, J. S.; Wu, P. J.; Wu, J. S.; Wu, X. J. et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 2020, 32, 2001136.

    CAS  Google Scholar 

  33. Zhang, G. X.; Xu, H. R.; Hu, J. M. Nanoarchitectonics on Bi2MoO6 by alkali etching for enhanced photocatalytic performance. Adv. Powder Technol. 2021, 32, 4384–4390.

    CAS  Google Scholar 

  34. Lee, W.; Jung, H. J.; Lee, M. H.; Kim, Y. B.; Park, J. S.; Sinclair, R.; Prinz, F. B. Oxygen surface exchange at grain boundaries of oxide ion conductors. Adv. Funct. Mater. 2012, 22, 965–971.

    CAS  Google Scholar 

  35. Kim, N.; Gu, T. H.; Shin, D.; Jin, X. Y.; Shin, H.; Kim, M. G.; Kim, H.; Hwang, S. J. Lattice engineering to simultaneously control the defect/stacking structures of layered double hydroxide nanosheets to optimize their energy functionalities. ACS Nano 2021, 15, 8306–8318.

    CAS  Google Scholar 

  36. Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 11, 310–316.

    Google Scholar 

  37. Hafizuddin, S.; Mohapatra, N. C. A first-principles theory of the strain-effect electric field gradient in cubic metals due to point defects. J. Phys. F:Metal Phys. 1986, 16, 217–232.

    CAS  Google Scholar 

  38. Gu, W.; Li, J. Y.; Wang, Y. D. Effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging. Int. J. Miner. Metall. Mater. 2015, 22, 721–728.

    CAS  Google Scholar 

  39. Cai, C. L.; Wang, T.; Qu, G. W.; Feng, Z. Q. High thermal conductivity of graphene and structure defects: Prospects for thermal applications in graphene sheets. Chin. Chem. Lett. 2021, 22, 1293–1298.

    Google Scholar 

  40. Zanca, F.; Glasby, L. T.; Chong, S.; Chen, S. Y.; Kim, J.; Fairen-Jimenez, D.; Monserrat, B.; Moghadam, P. Z. Computational techniques for characterisation of electrically conductive MOFs: Quantum calculations and machine learning approaches. J. Mater. Chem. C 2021, 9, 13584–13599.

    CAS  Google Scholar 

  41. Xu, Q.; Li, X. F.; Sari, H. M. K.; Li, W. B.; Liu, W.; Hao, Y. C.; Qin, J.; Cao, B.; Xiao, W.; Xu, Y. et al. Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides. Nano Energy 2020, 77, 105034.

    CAS  Google Scholar 

  42. Wang, X. H.; Fang, Y.; Shi, B.; Huang, F. F.; Rong, F.; Que, R. H. Three-dimensional NiCo2O4@NiCo2O4 core-shell nanocones arrays for high-performance supercapacitors. Chem. Eng.>J. 2018, 344, 311–319.

    CAS  Google Scholar 

  43. Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive. J. Electrochem. Soc. 2015, 162, A5185–A5189.

    CAS  Google Scholar 

  44. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin. Science 2014, 343, 1210–1211.

    CAS  Google Scholar 

  45. Mathis, T. S.; Kurra, N.; Wang, X. H.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007.

    CAS  Google Scholar 

  46. Li, M.; Ma, K. Y.; Cheng, J. P.; Lv, D. H.; Zhang, X. B. Nickel-cobalt hydroxide nanoflakes conformal coating on carbon nanotubes as a supercapacitive material with high-rate capability. J. Power Sources 2015, 286, 438–444.

    CAS  Google Scholar 

  47. Chodankar, N. R.; Pham, H. D.; Nanjundan, A. K.; Fernando, J. F. S.; Jayaramulu, K.; Golberg, D.; Han, Y. K.; Dubal, D. P. True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors. Small 2020, 16, 2002806.

    CAS  Google Scholar 

  48. Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048–3058.

    CAS  Google Scholar 

  49. Xu, B.; Zhang, H. B.; Mei, H.; Sun, D. F. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord. Chem. Rev. 2020, 420, 213438.

    CAS  Google Scholar 

  50. Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234.

    CAS  Google Scholar 

  51. Wang, C.; Sui, G.; Guo, D. X.; Li, J. L.; Zhang, L.; Li, S. B.; Xin, J. J.; Chai, D. F.; Guo, W. X. Structure-designed synthesis of hollow/porous cobalt sulfide/phosphide based materials for optimizing supercapacitor storage properties and hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 599, 577–585.

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 52171082 and 51001091) and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 21IRTSTHN003). This work was also partially supported by the provincial scientific research program of Henan (No. 182102310815) and Nuclear Material Technology Innovation Fund for National Defense Technology Industry (No. ICNM-2021-YZ-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guosheng Shao or Junhua Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, J., Wen, X., Lei, H. et al. In-plane grain boundary induced defect state in hierarchical NiCo-LDH and effect on battery-type charge storage. Nano Res. 16, 4908–4916 (2023). https://doi.org/10.1007/s12274-022-4485-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4485-1

Keywords

Navigation