Skip to main content
Log in

Vacancies-rich CoAl monolayer layered double hydroxide as efficient superoxide dismutase-like nanozyme

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the extensive development of nanozymes in recent years, catalytic efficiency has been considered as the Gordian knot that restricts the further applications of nanozyme. Moreover, the usage of layered double hydroxides (LDHs) as antioxidant nanozymes for scavenging reactive oxygen species (ROS) has not been studied. Herein, we report a vacancies-rich monolayer cobalt-alumina LDH nanosheet (m-CoAl-LDH) through a facile direct synthesis method as an efficient nanozyme with superoxide dismutase (SOD)-like activity. The m-CoAl-LDH exhibits a record-breaking catalytic efficiency with the catalytic constant (Kcat) as high as 4.33 × 1011 M−1s−1. Elucidated by the experimental and theoretical studies, the abundant oxygen and metal vacancies were existed in the single layer for the outstanding performance owing to the increased active sites. In addition, density functional theory (DFT) calculations further reveal the significant role of synergistic effect of oxygen and metal vacancies in reducing the adsorption energy of superoxide (O2), which improves the catalytic performance. The m-CoAl-LDH nanosheets were applied in cells to relieving the oxidative damage caused by O2 in mitochondria. Such vacancy-rich monolayer CoAl-LDH nanosheets represent the first example of LDH nanozyme with specific SOD-like activity as well as record high catalytic efficiency, which may provide deeper insight into efficient nanozyme design by defect-engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606.

    Article  CAS  Google Scholar 

  2. Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell. Biol. 2018, 217, 1915–1928.

    Article  CAS  Google Scholar 

  3. Sheng, Y. W.; Abreu, I. A.; Cabelli, D. E.; Maroney, M. J.; Miller, A. F.; Teixeira, M.; Valentine, J. S. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014, 114, 3854–3918.

    Article  CAS  Google Scholar 

  4. Zhao, H. Q.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.

    Article  CAS  Google Scholar 

  5. Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.

    Article  CAS  Google Scholar 

  6. Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

    Article  CAS  Google Scholar 

  7. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  8. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  Google Scholar 

  9. Wu, G.; Berka, V.; Derry, P. J.; Mendoza, K.; Kakadiaris, E.; Roy, T.; Kent, T. A.; Tour, J. M.; Tsai, A. L. Critical comparison of the superoxide dismutase-like activity of carbon antioxidant nanozymes by direct superoxide consumption kinetic measurements. ACS Nano 2019, 13, 11203–11213.

    Article  CAS  Google Scholar 

  10. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  Google Scholar 

  11. Korschelt, K.; Ragg, R.; Metzger, C. S.; Kluenker, M.; Oster, M.; Barton, B.; Panthöfer, M.; Strand, D.; Kolb, U.; Mondeshki, M. et al. Glycine-functionalized copper(II) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale 2017, 9, 3952–3960.

    Article  CAS  Google Scholar 

  12. Forman, H. J.; Fridovich, I. Superoxide dismutase: A comparison of rate constants. Arch. Biochem. Biophys. 1973, 158, 396–400.

    Article  CAS  Google Scholar 

  13. Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

  14. Ragg, R.; Schilmann, A. M.; Korschelt, K.; Wieseotte, C.; Kluenker, M.; Viel, M.; Völker, L.; Preiß, S.; Herzberger, J.; Frey, H. et al. Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J. Mater. Chem. B 2016, 4, 7423–7428.

    Article  CAS  Google Scholar 

  15. Mu, J. S.; Zhao, X.; Li, J.; Yang, E. C.; Zhao, X. J. Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J. Mater. Chem. B 2016, 4, 5217–5221.

    Article  CAS  Google Scholar 

  16. Wang, X. Y.; Gao, X. J.; Qin, L.; Wang, C. D.; Song, L.; Zhou, Y. N.; Zhu, G. Y.; Cao, W.; Lin, S. C.; Zhou, L. Q. et al. eg Occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 2019, 10, 704.

    Article  CAS  Google Scholar 

  17. Baldim, V.; Bedioui, F.; Mignet, N.; Margaill, I.; Berret, J. F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale 2018, 10, 6971–6980.

    Article  CAS  Google Scholar 

  18. Singh, N.; Geethika, M.; Eswarappa, S. M.; Mugesh, G. Manganese-based nanozymes: Multienzyme redox activity and effect on the nitric oxide produced by endothelial nitric oxide synthase. Chemistry 2018, 24, 8393–8403.

    Article  CAS  Google Scholar 

  19. Gupta, A.; Das, S.; Neal, C. J.; Seal, S. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. J. Mater. Chem. B 2016, 4, 3195–3202.

    Article  CAS  Google Scholar 

  20. He, J.; Zhou, L.; Liu, J.; Yang, L.; Zou, L.; Xiang, J. Y.; Dong, S. W.; Yang, X. C. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques. Appl. Surf. Sci. 2017, 402, 469–477.

    Article  CAS  Google Scholar 

  21. Jain, V.; Bhagat, S.; Singh, M.; Bansal, V.; Singh, S. Unveiling the effect of 11-MUA coating on biocompatibility and catalytic activity of a gold-core cerium oxide-shell-based nanozyme. RSC Adv. 2019, 9, 33195–33206.

    Article  CAS  Google Scholar 

  22. Damle, M. A.; Jakhade, A. P.; Chikate, R. C. Modulating pro- and antioxidant activities of nanoengineered cerium dioxide nanoparticles against Escherichia coli. ACS Omega 2019, 4, 3761–3771.

    Article  CAS  Google Scholar 

  23. Wu, J. J. X.; Wei, H. Efficient design strategies for nanozymes. Prog. Chem. 2021, 33, 42–51.

    CAS  Google Scholar 

  24. Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 7, 0052.

    Article  Google Scholar 

  25. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    Article  CAS  Google Scholar 

  26. Neri, S.; Martin, S. G.; Pezzato, C.; Prins, L. J. Photoswitchable catalysis by a nanozyme mediated by a light-sensitive cofactor. J. Am. Chem. Soc. 2017, 139, 1794–1797.

    Article  CAS  Google Scholar 

  27. Wang, L. W.; Gao, F.; Wang, A. Z.; Chen, X. Y.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X. et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 2020, 32, 2005423.

    Article  CAS  Google Scholar 

  28. Vernekar, A. A.; Das, T.; Mugesh, G. Vacancy-engineered nanoceria: Enzyme mimetic hotspots for the degradation of nerve agents. Angew. Chem., Int. Ed. 2016, 55, 1412–1416.

    Article  CAS  Google Scholar 

  29. Cao, F. F.; Zhang, L.; Wang, H.; You, Y. W.; Wang, Y.; Gao, N.; Ren, J. S.; Qu, X. G. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2019, 58, 16236–16242.

    Article  CAS  Google Scholar 

  30. Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay. Miner. 1983, 31, 305–311.

    Article  CAS  Google Scholar 

  31. Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301.

    Article  CAS  Google Scholar 

  32. Amini, R.; Asadpour-Zeynali, K. Cauliflower-like NiCo2O4-Zn/Al layered double hydroxide nanocomposite as an efficient electrochemical sensing platform for selective pyridoxine detection. Electroanalysis 2020, 32, 1160–1169.

    Article  CAS  Google Scholar 

  33. Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018, 28, 1802943.

    Article  Google Scholar 

  34. Elgendy, A.; El Basiony, N. M.; Heakal, F. E. T.; Elkholy, A. E. Mesoporous Ni-Zn-Fe layered double hydroxide as an efficient binder-free electrode active material for high-performance supercapacitors. J. Power Sources 2020, 466, 228294.

    Article  CAS  Google Scholar 

  35. Feng, J. T.; He, Y. F.; Liu, Y. N.; Du, Y. Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291–5319.

    Article  CAS  Google Scholar 

  36. Gao, R.; Mei, X.; Yan, D. P.; Liang, R. Z.; Wei, M. Nanophotosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 2018, 9, 2798.

    Article  Google Scholar 

  37. Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

    Article  CAS  Google Scholar 

  38. Liu, P. F.; Yang, S.; Zhang, B.; Yang, H. G. Defect-rich ultrathin cobalt-iron layered double hydroxide for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 34474–34481.

    Article  CAS  Google Scholar 

  39. Jouyban, A.; Amini, R. Layered double hydroxides as an efficient nanozyme for analytical applications. Microchem. J. 2021, 164, 105970.

    Article  CAS  Google Scholar 

  40. Yu, J. F.; Martin, B. R.; Clearfield, A.; Luo, Z. P.; Sun, L. Y. One-step direct synthesis of layered double hydroxide single-layer nanosheets. Nanoscale 2015, 7, 9448–9451.

    Article  CAS  Google Scholar 

  41. Liu, Z. P.; Ma, R. Z.; Ebina, Y.; Iyi, N.; Takada, K.; Sasaki, T. General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 2007, 23, 861–867.

    Article  CAS  Google Scholar 

  42. Iyi, N.; Ebina, Y.; Sasaki, T. Synthesis and characterization of water-swellable LDH (layered double hydroxide) hybrids containing sulfonate-type intercalant. J. Mater. Chem. 2011, 21, 8085–8095.

    Article  CAS  Google Scholar 

  43. Li, X. C. Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424.

    Article  CAS  Google Scholar 

  44. Childs, R. E.; Bardsley, W. G. The steady-state kinetics of peroxidase with 2, 2’-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 1975, 145, 93–103.

    Article  CAS  Google Scholar 

  45. Niu, H.; Yang, X.; Wang, Q.; Jing, X. Y.; Cheng, K.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Electrostatic self-assembly of MXene and edge-rich CoAl layered double hydroxide on molecular-scale with superhigh volumetric performances. J. Energy Chem. 2020, 46, 105–113.

    Article  Google Scholar 

  46. Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

    Article  Google Scholar 

  47. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Article  CAS  Google Scholar 

  48. Bai, F.; Xu, L.; Zhai, X. Y.; Chen, X.; Yang, W. S. Vacancy in ultrathin 2D nanomaterials toward sustainable energy application. Adv. Energy Mater. 2020, 10, 1902107.

    Article  CAS  Google Scholar 

  49. Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K. et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem., Int. Ed. 2019, 58, 11860–11867.

    Article  CAS  Google Scholar 

  50. Dong, J. L.; Song, L. N.; Yin, J. J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959–1970.

    Article  CAS  Google Scholar 

  51. Wang, Y. Y.; Qiao, M.; Li, Y. F.; Wang, S. Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 2011, 14, 1800136.

    Article  Google Scholar 

  52. Li, H.; Shi, J. G.; Zhao, K.; Zhang, L. Z. Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale 2014, 6, 14168–14173.

    Article  CAS  Google Scholar 

  53. Pasquini, C.; Liu, S.; Chernev, P.; Gonzalez-Flores, D.; Mohammadi, M. R.; Kubella, P.; Jiang, S.; Loos, S.; Klingan, K.; Sikolenko, V. et al. Operando tracking of oxidation-state changes by coupling electrochemistry with time-resolved X-ray absorption spectroscopy demonstrated for water oxidation by a cobalt-based catalyst film. Anal. Bioanal. Chem. 2021, 413, 5395–5408.

    Article  CAS  Google Scholar 

  54. Wang, Q.; Chen, L. F.; Guan, S. L.; Zhang, X.; Wang, B.; Cao, X. Z.; Yu, Z.; He, Y. F.; Evans, D. G.; Feng, J. T. et al. Ultrathin and vacancy-rich CoAl-layered double hydroxide/graphite oxide catalysts: Promotional effect of cobalt vacancies and oxygen vacancies in alcohol oxidation. ACS Catal. 2011, 8, 3104–3115.

    Article  Google Scholar 

  55. Peng, X.; Zhang, X. M.; Wang, L.; Hu, L. S.; Cheng, S. H. S.; Huang, C.; Gao, B.; Ma, F.; Huo, K. F.; Chu, P. K. Hydrogenated V2O5 nanosheets for superior lithium storage properties. Adv. Funct. Mater. 2016, 26, 784–791.

    Article  CAS  Google Scholar 

  56. Abreu, I. A.; Cabelli, D. E. Superoxide dismutases—A review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 2010, 1804, 263–274.

    Article  CAS  Google Scholar 

  57. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  Google Scholar 

  58. Segel, I. H. Enzyme kinetics behavior and analysis of rapid equilibrium and steady state enzyme systems. FEBS Lett. 1975, 60, 220.

    Article  Google Scholar 

  59. Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.

    Article  CAS  Google Scholar 

  60. Liu, Y. F.; Zhang, Y. H.; Liu, Q. Y.; Wang, Q.; Lin, A. Q.; Luo, J.; Du, Y.; Lin, Y. W.; Wei, H. In vitro measurement of superoxide dismutase-like nanozyme activity: A comparative study. Analyst 2021, 146, 1872–1879.

    Article  CAS  Google Scholar 

  61. Singh, N.; NaveenKumar, S. K.; Geethika, M.; Mugesh, G. A cerium vanadate nanozyme with specific superoxide dismutase activity regulates mitochondrial function and ATP synthesis in neuronal cells. Angew. Chem., Int. Ed. 2021, 60, 3121–3130.

    Article  CAS  Google Scholar 

  62. Wang, Q. Q.; Chen, J. X.; Zhang, H.; Wu, W. W.; Zhang, Z. Q.; Dong, S. J. Porous Co3O4 nanoplates with pH-switchable peroxidase-and catalase-like activity. Nanoscale 2018, 10, 19140–19146.

    Article  CAS  Google Scholar 

  63. Xie, Y. S.; Wang, Z.; Ju, M.; Long, X.; Yang, S. H. Dispersing transition metal vacancies in layered double hydroxides by ionic reductive complexation extraction for efficient water oxidation. Chem. Sci. 2019, 10, 8354–8359.

    Article  CAS  Google Scholar 

  64. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

    Article  CAS  Google Scholar 

  65. Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

    Article  CAS  Google Scholar 

  66. Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    Article  CAS  Google Scholar 

  67. Guo, S. B.; Han, Y.; Guo, L. Mechanistic study of catalase- and superoxide dismutation-mimic activities of cobalt oxide nanozyme from first-principles microkinetic modeling. Catal. Surv. Asia 2020, 24, 70–85.

    Article  CAS  Google Scholar 

  68. Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. Reactivity of HO2/O2 radicals in aqueous solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100.

    Article  CAS  Google Scholar 

  69. Wang, Z. Z.; Wu, J. J. X.; Zheng, J. J.; Shen, X. M.; Yan, L.; Wei, H.; Gao, X. F.; Zhao, Y. L. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 2021, 12, 6866.

    Article  CAS  Google Scholar 

  70. Nicholls, D. G. Simultaneous monitoring of ionophore- and inhibitormediated plasma and mitochondrial membrane potential changes in cultured neurons. J. Biol. Chem. 2006, 281, 14864–14874.

    Article  CAS  Google Scholar 

  71. Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.

    Article  CAS  Google Scholar 

  72. Xia, D. L.; Xu, P. P.; Luo, X. Y.; Zhu, J. F.; Gu, H. Y.; Huo, D.; Hu, Y. Overcoming hypoxia by multistage nanoparticle delivery system to inhibit mitochondrial respiration for photodynamic therapy. Adv. Funct. Mater. 2019, 29, 1807294.

    Article  Google Scholar 

  73. Zhang, W.; Wang, X.; Li, P.; Xiao, H. B.; Zhang, W.; Wang, H.; Tang, B. Illuminating superoxide anion and pH enhancements in apoptosis of breast cancer cells induced by mitochondrial hyperfusion using a new two-photon fluorescence probe. Anal. Chem. 2017, 89, 6840–6845.

    Article  CAS  Google Scholar 

  74. Ali, S. S.; Hardt, J. I.; Quick, K. L.; Kim-Han, J. S.; Erlanger, B. F.; Huang, T. T.; Epstein, C. J.; Dugan, L. L. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 2004, 37, 1191–1202.

    Article  CAS  Google Scholar 

  75. Dashtestani, F.; Ghourchian, H.; Najafi, A. Albumin coated copper-cysteine nanozyme for reducing oxidative stress induced during sperm cryopreservation. Bioorg. Chem. 2018, 80, 621–630.

    Article  CAS  Google Scholar 

  76. Batinić-Haberle, I.; Liochev, S. I.; Spasojević, I.; Fridovich, I. A potent superoxide dismutase mimic: Manganese β-octabromo-mesotetrakis-(N-methylpyridinium-4-yl) porphyrin. Arch. Biochem. Biophys. 1997, 343, 225–233.

    Article  Google Scholar 

  77. Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Caputi, A. P.; Aston, K.; Riley, D. P.; Salvemini, D. Protective effects of a new stable, highly active SOD mimetic, M40401 in splanchnic artery occlusion and reperfusion. Brit. J. Pharmacol. 2001, 132, 19–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21521005 and 21874005), the Fundamental Research Funds for the Central Universities (No. XK1901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, J., Yang, WS. et al. Vacancies-rich CoAl monolayer layered double hydroxide as efficient superoxide dismutase-like nanozyme. Nano Res. 15, 7940–7950 (2022). https://doi.org/10.1007/s12274-022-4479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4479-z

Keywords

Navigation