Skip to main content
Log in

Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, the development of chemodynamic therapy (CDT) offers a potential approach for fighting bacteria and treating infectious diseases, in which those CDT nanoagents can catalyze the generation of hydroxyl radicals (•OH) to destroy bacteria. In this work, to improve the efficiency of CDT, we have designed a new kind of metformin (Met)-capped two-dimensional Cu2(OH)3Cl nanosheets (CuOHCl-Met NSs) with good monodispersity, highly positive charge, and good biocompatibility for improving antibacterial effect and accelerating wound healing. With the capped Met, CuOHCl-Met NSs can effectively kill bacteria under a low concentration (6 µg·mL−1) and a short treatment time (in 15 min), showing great advantages over the counterpart without Met. In vivo results demonstrated that CuOHCl-Met NSs accelerated the tissue regeneration of staphylococcus aureus-infected dermal wounds. This study provides a new pathway for improving efficiency of CDT nanoagent through using old drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makabenta, J. M. V.; Nabawy, A.; Li, C. H.; Schmidt-Malan, S.; Patel, R.; Rotello, V. M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36.

    CAS  Google Scholar 

  2. World Health of Organization. The Top 10 Causes of Death [Online]. WHO. http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed Dec 9, 2020).

  3. Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15.

    CAS  Google Scholar 

  4. Garland, M.; Loscher, S.; Bogyo, M. Chemical strategies to target bacterial virulence. Chem. Rev. 2017, 117, 4422–4461.

    CAS  Google Scholar 

  5. Rello, J.; Campogiani, L.; Eshwara, V. K. Understanding resistance in enterococcal infections. Intens. Care Med. 2020, 46, 353–356.

    Google Scholar 

  6. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655.

    Google Scholar 

  7. Balderrama-González, A. S.; Piñón-Castillo, H. A.; Ramírez-Valdespino, C. A.; Landeros-Martínez, L. L.; Orrantia-Borunda, E.; Esparza-Ponce, H. E. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 2021, 22, 12890.

    Google Scholar 

  8. Ermini, M. L.; Voliani, V. Antimicrobial nano-agents: The copper age. ACS Nano 2021, 15, 6008–6029.

    CAS  Google Scholar 

  9. Dibrov, P.; Dzioba, J.; Gosink, K. K.; Häse, C. C. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother. 2002, 46, 2668–2670.

    CAS  Google Scholar 

  10. Klasen, H. J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 2000, 26, 117–130.

    CAS  Google Scholar 

  11. Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.

    CAS  Google Scholar 

  12. Zhu, Y.; Xu, J.; Wang, Y. M.; Chen, C.; Gu, H. C.; Chai, Y. M.; Wang, Y. Silver nanoparticles-decorated and mesoporous silica coated single-walled carbon nanotubes with an enhanced antibacterial activity for killing drug-resistant bacteria. Nano Res. 2020, 13, 389–400.

    CAS  Google Scholar 

  13. Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

    CAS  Google Scholar 

  14. Stabryla, L. M.; Johnston, K. A.; Diemler, N. A.; Cooper, V. S.; Millstone, J. E.; Haig, S. J.; Gilbertson, L. M. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat. Nanotechnol. 2021, 16, 996–1003.

    CAS  Google Scholar 

  15. Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.

    CAS  Google Scholar 

  16. Xiao, Z. M.; Zuo, W. B.; Chen, L. P.; Wu, L.; Liu, N. A.; Liu, J. X.; Jin, Q. Y.; Zhao, Y. L.; Zhu, X. H2O2 self-supplying and GSH-depleting nanoplatform for chemodynamic therapy synergetic photothermal/chemotherapy. ACS Appl. Mater. Interfaces 2021, 13, 43925–43936.

    CAS  Google Scholar 

  17. Lu, J.; Jiang, Z. Y.; Ren, J.; Zhang, W.; Li, P.; Chen, Z. Z.; Zhang, W.; Wang, H.; Tang, B. One-pot synthesis of multifunctional carbon-based nanoparticle-supported dispersed Cu2+ disrupts redox homeostasis to enhance CDT. Angew. Chem., Int. Ed. 2022, 61, e202114373.

    CAS  Google Scholar 

  18. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

    Google Scholar 

  19. Wang, S.; Wang, Z. T.; Yu, G. C.; Zhou, Z. J.; Jacobson, O.; Liu, Y. J.; Ma, Y.; Zhang, F. W.; Chen, Z. Y.; Chen, X. Y. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy. Adv. Sci. 2019, 6, 1801986.

    Google Scholar 

  20. Chen, X. Y.; Zhang, H. L.; Zhang, M.; Zhao, P. R.; Song, R. X.; Gong, T.; Liu, Y. Y.; He, X. H.; Zhao, K. L.; Bu, W. B. Amorphous Fe-based nanoagents for self-enhanced chemodynamic therapy by reestablishing tumor acidosis. Adv. Funct. Mater. 2020, 30, 1908365.

    CAS  Google Scholar 

  21. Tao, Q.; He, G. H.; Ye, S.; Zhang, D.; Zhang, Z. D.; Qi, L.; Liu, R. Y. Mn doped Prussian blue nanoparticles for T1/T2 MR imaging, PA imaging and Fenton reaction enhanced mild temperature photothermal therapy of tumor. J. Nanobiotechnol. 2022, 20, 18.

    CAS  Google Scholar 

  22. Wang, L.; Zhuang, L.; He, S.; Tian, F. Z.; Yang, X. T.; Guan, S. Y.; Waterhouse, G. I. N.; Zhou, S. Y. Nanocarbon framework-supported ultrafine Mo2C@MoOx nanoclusters for photothermal-enhanced tumor-specific tandem catalysis therapy. ACS Appl. Mater. Interfaces 2021, 13, 59649–59661.

    CAS  Google Scholar 

  23. Shan, J. Y.; Li, X.; Yang, K. L.; Xiu, W.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797–13808.

    CAS  Google Scholar 

  24. Yang, N.; Guo, H.; Cao, C. Y.; Wang, X. R.; Song, X. J.; Wang, W. J.; Yang, D. L.; Xi, L.; Mou, X. Z.; Dong, X. C. Infection microenvironment-activated nanoparticles for NIR-II photoacoustic imaging-guided photothermal/chemodynamic synergistic anti-infective therapy. Biomaterials 2021, 275, 120918.

    CAS  Google Scholar 

  25. Guo, G. Y.; Zhang, H. L.; Shen, H.; Zhu, C. Z.; He, R. K.; Tang, J.; Wang, Y.; Jiang, X. W.; Wang, J. X.; Bu, W. B. et al. Space-selective chemodynamic therapy of CuFe5O8 nanocubes for implant-related infections. ACS Nano 2020, 14, 13391–13405.

    CAS  Google Scholar 

  26. Wang, Z. M.; Zhen, X.; Upputuri, P. K.; Jiang, Y. Y.; Lau, J.; Pramanik, M.; Pu, K. Y.; Xing, B. G. Redox-activatable and acid-enhanced nanotheranostics for second near-infrared photoacoustic tomography and combined photothermal tumor therapy. ACS Nano 2019, 13, 5816–5825.

    CAS  Google Scholar 

  27. Hao, Y.; Dong, Z. L.; Chen, M. C.; Chao, Y.; Liu, Z.; Feng, L. Z.; Hao, Y.; Dong, Z. L.; Chen, M. C.; Chao, Y. et al. Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. Biomaterials 2020, 228, 119568.

    CAS  Google Scholar 

  28. Jia, C. Y.; Guo, Y. X.; Wu, F. G. Chemodynamic therapy via fenton and fenton-like nanomaterials: Strategies and recent advances. Small 2022, 18, 2103868.

    CAS  Google Scholar 

  29. Wei, X. S.; Li, J.; Zhang, Y. F.; Zheng, Y.; Zhang, Y. L.; Meng, H. P.; Wu, G. L.; Hu, Y. Q.; Gao, Y. C.; Huang, S. Y. et al. Synergy between clinical microenvironment targeted nanoplatform and near-infrared light irradiation for managing Pseudomonas aeruginosa infections. ACS Appl. Mater. Interfaces 2021, 13, 38979–38989.

    CAS  Google Scholar 

  30. Liu, H. Y.; Zhong, W. H.; Zhang, X. Y.; Lin, D. J.; Wu, J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J. Mater. Chem. B 2021, 9, 7878–7908.

    CAS  Google Scholar 

  31. Mei, L. Q.; Zhu, S.; Liu, Y. P.; Yin, W. Y.; Gu, Z. J.; Zhao, Y. L. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 2021, 418, 129431.

    CAS  Google Scholar 

  32. Mude, H.; Maroju, P. A.; Balapure, A.; Ganesan, R.; Ray Dutta, J. Quaternized polydopamine coatings for anchoring molecularly dispersed broad-spectrum antimicrobial silver salts. ACS Appl. Bio Mater. 2021, 4, 8396–8406.

    CAS  Google Scholar 

  33. Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465.

    CAS  Google Scholar 

  34. Lin, J.; Chen, X. Y.; Chen, C. Y.; Hu, J. T.; Zhou, C. L.; Cai, X. F.; Wang, W.; Zheng, C.; Zhang, P. P.; Cheng, J. et al. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136.

    CAS  Google Scholar 

  35. Liu, C.; Guo, Y. Q.; Wei, X. J.; Wang, C.; Qu, M. C.; Schubert, D. W.; Zhang, C. H. An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment. Chem. Eng. J. 2020, 384, 123306.

    CAS  Google Scholar 

  36. Sterne, J. Du nouveau dans les antidiabétiques. La NN dimethylamine guanyl guanidine (N.N.D.G.). Maroc. Med. 1957, 36, 1295–1296.

    Google Scholar 

  37. Nosengo, N. Can you teach old drugs new tricks. Nature 2016, 534, 314–316.

    Google Scholar 

  38. Pernicova, I.; Korbonits, M. Metformin—Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014, 10, 143–156.

    CAS  Google Scholar 

  39. Veeramachaneni, R.; Yu, W. J.; Newton, J. M.; Kemnade, J. O.; Skinner, H. D.; Sikora, A. G.; Sandulache, V. C. Metformin generates profound alterations in systemic and tumor immunity with associated antitumor effects. J. Immunother. Cancer 2021, 9, e002773.

    Google Scholar 

  40. Fatima, S.; Bhaskar, A.; Dwivedi, V. P. Repurposing immunomodulatory drugs to combat tuberculosis. Front. Immunol. 2021, 12, 645485.

    CAS  Google Scholar 

  41. Biegański, P.; Szczupak, L.; Arruebo, M.; Kowalski, K. Brief survey on organometalated antibacterial drugs and metal-based materials with antibacterial activity. RSC Chem. Biol. 2021, 2, 368–386.

    Google Scholar 

  42. Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Adv. 2014, 4, 49595–49604.

    CAS  Google Scholar 

  43. Repiščák, P.; Erhardt, S.; Rena, G.; Paterson, M. J. Biomolecular mode of action of metformin in relation to its copper binding properties. Biochemistry 2014, 53, 787–795.

    Google Scholar 

  44. Li, S. S.; Gu, K.; Wang, H.; Xu, B. L.; Li, H. W.; Shi, X. H.; Huang, Z. J.; Liu, H. Y. Degradable holey palladium nanosheets with highly active 1D nanoholes for synergetic phototherapy of hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 5649–5656.

    CAS  Google Scholar 

  45. He, J.; Lu, Y. C.; Luo, G. S. Ca(II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chem. Eng. J. 2014, 244, 202–208.

    CAS  Google Scholar 

  46. Sacks, D.; Baxter, B.; Campbell, B. C. V.; Carpenter, J. S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J. A. et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke 2018, 13, 612–632.

    Google Scholar 

  47. Schneider, J. D.; Smith, B. A.; Williams, G. A.; Powell, D. R.; Perez, F.; Rowe, G. T.; Yang, L. Synthesis and characterization of Cu(II) and mixed-valence Cu(I)Cu(II) clusters supported by pyridylamide ligands. Inorg. Chem. 2020, 59, 5433–5446.

    CAS  Google Scholar 

  48. Yu, J.; Cao, Q.; Feng, B.; Li, C. L.; Liu, J. Y.; Clark, J. K.; Delaunay, J. J. Insights into the efficiency and stability of Cu-based nanowires for electrocatalytic oxygen evolution. Nano Res. 2018, 11, 4323–4332.

    CAS  Google Scholar 

  49. Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

    CAS  Google Scholar 

  50. Xiao, J. Y.; Hai, L.; Li, Y. Y.; Li, H.; Gong, M. H.; Wang, Z. F.; Tang, Z. F.; Deng, L.; He, D. G. An ultrasmall Fe3O4-decorated polydopamine hybrid nanozyme enables continuous conversion of oxygen into toxic hydroxyl radical via GSH-depleted cascade redox reactions for intensive wound disinfection. Small 2022, 18, 2105465.

    CAS  Google Scholar 

  51. Wu, M. Q.; Zhang, Z. Y.; Liu, Z. R.; Zhang, J. M.; Zhang, Y. L.; Ding, Y. M.; Huang, T.; Xiang, D. L.; Wang, Z.; Dai, Y. J. et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104.

    CAS  Google Scholar 

  52. Liu, Y.; Jia, Y. Q.; Yang, K. N.; Li, R. C.; Xiao, X.; Zhu, K.; Wang, Z. Q. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv. Sci. 2020, 7, 1902227.

    CAS  Google Scholar 

  53. Wu, X. Y.; Fan, W.; Fan, B. Synergistic effects of silver ions and metformin against enterococcus faecalis under high-glucose conditions in vitro. BMC Microbiol 2021, 21, 261.

    CAS  Google Scholar 

  54. Masadeh, M. M.; Alzoubi, K. H.; Masadeh, M. M.; Aburashed, Z. O. Metformin as a potential adjuvant antimicrobial agent against multidrug resistant bacteria. Clin. Pharmacol. 2021, 13, 83–90.

    Google Scholar 

  55. Dash, A.; Behera, S. R.; Pattanaik, B. K.; Palo, A. K. Study of antimicrobial property of some hypoglycemic drugs. Chron. Young Sci. 2011, 2, 219–221.

    CAS  Google Scholar 

  56. Ma, Y. S.; Xu, H. H.; Sun, B.; Du, S. L.; Cui, S.; Zhang, L.; Ding, N.; Yang, D. Z. pH-responsive oxygen and hydrogen peroxide self-supplying nanosystem for photodynamic and chemodynamic therapy of wound infection. ACS Appl. Mater. Interfaces 2021, 13, 59720–59730.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 82072065 and 81471784), and the National Youth Talent Support Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Yan or Linlin Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, S., Gao, J. et al. Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection. Nano Res. 16, 3991–3997 (2023). https://doi.org/10.1007/s12274-022-4457-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4457-5

Keywords

Navigation