Skip to main content
Log in

Platinum nanoparticles promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Breast cancer is a common malignancy in women with disappointing prognosis especially the triple-negative subtype. Recently, nanomedicine becomes a promising therapeutic strategy for breast cancer, such as platinum nanoparticles (PtNPs). Despite the promising anticancer effects of PtNPs, the safety of PtNPs remains to be fully evaluated. Herein, a series of cell and animal experiments demonstrate that PtNPs facilitate breast cancer metastasis by damaging the vascular endothelial barrier. PtNPs disrupt endothelial cell proliferation, migration and tube-like structure formation, destruct endothelial adhesions junctions and induce endothelial barrier leakiness in vitro most likely by stimulating intracellular reactive oxygen species (ROS) generation and altering the expression and conformation of endothelial junctional proteins, thus promoting intravasation and extravasation of the implanted 4T1 breast cancer cells and leading to cancer metastasis in female BALB/c nude mice in vivo. In addition, smaller PtNPs (5 nm) are more potent than larger PtNPs (70 nm) in exerting the above effects. The study provides the first evidence that PtNPs can promote breast cancer metastasis by damaging endothelial barrier. The unexpected detrimental effects of PtNPs should be considered in future nanomedicine designs for the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030.

    Article  Google Scholar 

  2. Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

    Article  Google Scholar 

  3. Qayoom, H.; Wani, N. A.; Alshehri, B.; Mir, M. A. An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol. 2021, 17, 4185–4206.

    Article  CAS  Google Scholar 

  4. Dong, X. F.; Wang, Y.; Huang, B. F.; Hu, G. N.; Shao, J. K.; Wang, Q.; Tang, C. H.; Wang, C. Q. Downregulated METTL14 expression correlates with breast cancer tumor grade and molecular classification. BioMed Res. Int. 2020, 2020, 8823270.

    Article  Google Scholar 

  5. Gao, L. L.; Guo, Q. Q.; Li, X. M.; Yang, X.; Ni, H. W.; Wang, T.; Zhao, Q.; Liu, H.; Xing, Y. Y.; Xi, T. et al. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. eBioMedicine 2019, 41, 395–407.

    Article  Google Scholar 

  6. Alven, S.; Aderibigbe, B. A. The therapeutic efficacy of dendrimer and micelle formulations for breast cancer treatment. Pharmaceutics 2020, 12, 1212.

    Article  CAS  Google Scholar 

  7. Samadi, A.; Klingberg, H.; Jauffred, L.; Kjær, A.; Bendix, P. M.; Oddershede, L. B. Platinum nanoparticles: A non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 2018, 10, 9097–9107.

    Article  CAS  Google Scholar 

  8. Ma, Z. Y.; Zhang, Y. F.; Zhang, J.; Zhang, W. Y.; Foda, M. F.; Dai, X. X.; Han, H. Y. Ultrasmall peptide-coated platinum nanoparticles for precise NIR-II photothermal therapy by mitochondrial targeting. ACS Appl. Mater. Interfaces 2020, 12, 39434–39443.

    Article  CAS  Google Scholar 

  9. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    Article  CAS  Google Scholar 

  10. Charest, G.; Paquette, B.; Fortin, D.; Mathieu, D.; Sanche, L. Concomitant treatment of F98 glioma cells with new liposomal platinum compounds and ionizing radiation. J. Neuro-Oncol. 2010, 97, 187–193.

    Article  CAS  Google Scholar 

  11. Usami, N.; Furusawa, Y.; Kobayashi, K.; Lacombe, S.; Reynaud-Angelin, A.; Sage, E.; Wu, T. D.; Croisy, A.; Guerquin-Kern, J. L.; Le Sech, C. Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int. J. Radiat. Biol. 2008, 84, 603–611.

    Article  CAS  Google Scholar 

  12. Fang, T. X.; Zhang, J.; Zuo, T. T.; Wu, G. Y.; Xu, Y. X.; Yang, Y.; Yang, J.; Shen, Q. Chemo-photothermal combination cancer therapy with ROS scavenging, extracellular matrix depletion, and tumor immune activation by telmisartan and diselenide-paclitaxel prodrug loaded nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 31292–31308.

    Article  CAS  Google Scholar 

  13. Kutwin, M.; Sawosz, E.; Jaworski, S.; Hinzmann, M.; Wierzbicki, M.; Hotowy, A.; Grodzik, M.; Winnicka, A.; Chwalibog, A. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Arch. Med. Sci. 2017, 13, 1322–1334.

    Article  CAS  Google Scholar 

  14. Kutwin, M.; Sawosz, E.; Jaworski, S.; Kurantowicz, N.; Strojny, B.; Chwalibog, A. Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin. Nanoscale Res. Lett. 2014, 9, 257.

    Article  Google Scholar 

  15. Parfenyev, S. E.; Shabelnikov, S. V.; Pozdnyakov, D. Y.; Gnedina, O. O.; Adonin, L. S.; Barlev, N. A.; Mittenberg, A. G. Proteomic analysis of Zeb1 interactome in breast carcinoma cells. Molecules 2021, 26, 3143.

    Article  CAS  Google Scholar 

  16. Suraj, J.; Kurpińska, A.; Zakrzewska, A.; Sternak, M.; Stojak, M.; Jasztal, A.; Walczak, M.; Chlopicki, S. Early and late endothelial response in breast cancer metastasis in mice: Simultaneous quantification of endothelial biomarkers using a mass spectrometry-based method. Dis. Model. Mech. 2019, 12, dmm036269.

    Google Scholar 

  17. Yang, L. D.; Joseph, S.; Sun, T. L.; Hoffmann, J.; Thevissen, S.; Offermanns, S.; Strilic, B. TAK1 regulates endothelial cell necroptosis and tumor metastasis. Cell Death Differ. 2019, 26, 1987–1997.

    Article  CAS  Google Scholar 

  18. Fares, J.; Fares, M. Y.; Khachfe, H. H.; Salhab, H. A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020, 5, 28.

    Article  Google Scholar 

  19. Hu, W.; Liu, C.; Bi, Z. Y.; Zhou, Q.; Zhang, H.; Li, L. L.; Zhang, J.; Zhu, W.; Song, Y. Y. Y.; Zhang, F. et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol. Cancer 2020, 19, 102.

    Article  CAS  Google Scholar 

  20. Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019, 14, 279–286.

    Article  CAS  Google Scholar 

  21. Wen, T.; Yang, A. Y.; Piao, L.; Hao, S. S.; Du, L. F.; Meng, J.; Liu, J.; Xu, H. Y. Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Int. J. Nanomedicine 2019, 14, 4475–4489.

    Article  CAS  Google Scholar 

  22. Bays, J. L.; DeMali, K. A. Vinculin in cell-cell and cell-matrix adhesions. Cell. Mol. Life Sci. 2017, 74, 2999–3009.

    Article  CAS  Google Scholar 

  23. Wang, D. P.; Wang, Z. J.; Zhao, R.; Lin, C. X.; Sun, Q. Y.; Yan, C. P.; Zhou, X.; Cao, J. M. Silica nanomaterials induce organ injuries by Ca2+-ROS-initiated disruption of the endothelial barrier and triggering intravascular coagulation. Part. Fibre Toxicol. 2020, 17, 12.

    Article  CAS  Google Scholar 

  24. Yang, Y.; Du, X. J.; Wang, Q.; Liu, J. W.; Zhang, E. G.; Sai, L. L.; Peng, C.; Lavin, M. F.; Yeo, A. J.; Yang, X. et al. Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int. J. Mol. Med. 2019, 44, 903–912.

    CAS  Google Scholar 

  25. Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017, 11, 5020–5030.

    Article  CAS  Google Scholar 

  26. Wang, J. P.; Zhang, L. Y.; Peng, F.; Shi, X. H.; Leong, D. T. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem. Mater. 2018, 30, 3759–3767.

    Article  CAS  Google Scholar 

  27. Gao, F.; Sabbineni, H.; Artham, S.; Somanath, P. R. Modulation of long-term endothelial-barrier integrity is conditional to the cross-talk between Akt and Src signaling. J. Cell. Mol. Med. 2017, 232, 2599–2609.

    CAS  Google Scholar 

  28. Zhang, D.; Bi, J. X.; Liang, Q. Y.; Wang, S. Y.; Zhang, L. J.; Han, F. Y.; Li, S. N.; Qiu, B. W.; Fan, X. D.; Chen, W. et al. VCAM1 promotes tumor cell invasion and metastasis by inducing EMT and transendothelial migration in colorectal cancer. Front. Oncol. 2020, 10, 1066.

    Article  Google Scholar 

  29. Crowley, J. L.; Smith, T. C.; Fang, Z. Y.; Takizawa, N.; Luna, E. J. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol. Biol. Cell 2009, 20, 948–962.

    Article  CAS  Google Scholar 

  30. Liu, D. M.; Iruthayanathan, M.; Homan, L. L.; Wang, Y. Q.; Yang, L. L.; Wang, Y.; Dillon, J. S. Dehydroepiandrosterone stimulates endothelial proliferation and angiogenesis through extracellular signal-regulated kinase 1/2-mediated mechanisms. Endocrinology 2008, 149, 889–898.

    Article  CAS  Google Scholar 

  31. Jones, C. A.; London, N. R.; Chen, H. Y.; Park, K. W.; Sauvaget, D.; Stockton, R. A.; Wythe, J. D.; Suh, W.; Larrieu-Lahargue, F.; Mukouyama, Y. S. et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med. 2008, 14, 448–453.

    Article  CAS  Google Scholar 

  32. Tsai, S. M.; Duran-Robles, E.; Goshia, T.; Mesina, M.; Garcia, C.; Young, J.; Sibal, A.; Chiu, M. H.; Chin, W. C. CeO2 nanoparticles attenuate airway mucus secretion induced by TiO2 nanoparticles. Sci. Total Environ. 2018, 631–632, 262–269.

    Article  Google Scholar 

  33. Pagáčová, E.; Štefančíková, L.; Schmidt-Kaler, F.; Hildenbrand, G.; Vičar, T.; Depeš, D.; Lee, J. H.; Bestvater, F.; Lacombe, S.; Porcel, E. et al. Challenges and contradictions of metal nano-particle applications for radio-sensitivity enhancement in cancer therapy. Int. J. Mol. Sci. 2019, 20, 588.

    Article  Google Scholar 

  34. Predoi, D.; Iconaru, S. L.; Predoi, M. V.; Stan, G. E.; Buton, N. Synthesis, characterization, and antimicrobial activity of magnesium-doped hydroxyapatite suspensions. Nanomaterials 2019, 9, 1295.

    Article  CAS  Google Scholar 

  35. Gunes, S.; He, Z. L.; van Acken, D.; Malone, R.; Cullen, P. J.; Curtin, J. F. Platinum nanoparticles inhibit intracellular ROS generation and protect against cold atmospheric plasma-induced cytotoxicity. Nanomed. Nanotechnol. Biol. Med. 2021, 36, 102436.

    Article  CAS  Google Scholar 

  36. Jawaid, P.; Rehman, M. U.; Zhao, Q. L.; Takeda, K.; Ishikawa, K.; Hori, M.; Shimizu, T.; Kondo, T. Helium-based cold atmospheric plasma-induced reactive oxygen species-mediated apoptotic pathway attenuated by platinum nanoparticles. J. Cell. Mol. Med. 2016, 20, 1737–1748.

    Article  CAS  Google Scholar 

  37. Gurunathan, S.; Jeyaraj, M.; Kang, M. H.; Kim, J. H. Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: Combination therapy for osteosarcoma treatment. Nanomaterials 2019, 9, 1089.

    Article  CAS  Google Scholar 

  38. Lin, C. X.; Gu, J. L.; Cao, J. M. The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomedicine 2019, 14, 5595–5609.

    Article  CAS  Google Scholar 

  39. Dejana, E.; Tournier-Lasserve, E.; Weinstein, B. M. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Dev. Cell 2009, 16, 209–221.

    Article  CAS  Google Scholar 

  40. Guilluy, C.; Zhang, Z. G.; Bhende, P. M.; Sharek, L.; Wang, L.; Burridge, K.; Damania, B. Latent KSHV infection increases the vascular permeability of human endothelial cells. Blood 2011, 118, 5344–5354.

    Article  CAS  Google Scholar 

  41. Osmanagic-Myers, S.; Rus, S.; Wolfram, M.; Brunner, D.; Goldmann, W. H.; Bonakdar, N.; Fischer, I.; Reipert, S.; Zuzuarregui, A.; Walko, G. et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J. Cell Sci. 2015, 128, 4138–4150.

    CAS  Google Scholar 

  42. Szulcek, R.; Beckers, C. M. L.; Hodzic, J.; de Wit, J.; Chen, Z. L.; Grob, T.; Musters, R. J. P.; Minshall, R. D.; van Hinsbergh, V. W. M.; van Nieuw Amerongen, G. P. Localized RhoA GTPase activity regulates dynamics of endothelial monolayer integrity. Cardiovasc. Res. 2013, 99, 471–482.

    Article  CAS  Google Scholar 

  43. Wenceslau, C. F.; McCarthy, C. G.; Webb, R. C. Formyl peptide receptor activation elicits endothelial cell contraction and vascular leakage. Front. Immunol. 2016, 7, 297.

    Article  Google Scholar 

  44. Dong, Z.; Saikumar, P.; Weinberg, J. M.; Venkatachalam, M. A. Calcium in cell injury and death. Annu. Rev. Pathol. 2006, 1, 405–434.

    Article  CAS  Google Scholar 

  45. Baliga, M. S.; Meleth, S.; Katiyar, S. K. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems. Clin. Cancer Res. 2005, 11, 1918–1927.

    Article  CAS  Google Scholar 

  46. Pulaski, B. A.; Ostrand-Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol., in press, DOI: https://doi.org/10.1002/0471142735.im2002s39.

  47. Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.

    Article  CAS  Google Scholar 

  48. Wang, D. H.; Wang, H. B.; Brown, J.; Daikoku, T.; Ning, W.; Shi, Q.; Richmond, A.; Strieter, R.; Dey, S. K.; DuBois, R. N. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J. Exp. Med. 2006, 203, 941–951.

    Article  CAS  Google Scholar 

  49. Conklin, M. W.; Keely, P. J. Why the stroma matters in breast cancer. Cell Adhes. Migr. 2012, 6, 249–260.

    Article  Google Scholar 

  50. Shapiro, L.; Weis, W. I. Structure and biochemistry of cadherins and catenins. Cold Spring Harb. Perspect. Biol. 2009, 1, a003053.

    Article  Google Scholar 

  51. Chervin-Pétinot, A.; Courçon, M.; Almagro, S.; Nicolas, A.; Grichine, A.; Grunwald, D.; Prandini, M. H.; Huber, P.; Gulino-Debrac, D. Epithelial protein lost in neoplasm (EPLIN) interacts with α-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J. Biol. Chem. 2012, 289, 7556–7572.

    Article  Google Scholar 

  52. Collins, R. J.; Jiang, W. G.; Hargest, R.; Mason, M. D.; Sanders, A. J. EPLIN: A fundamental actin regulator in cancer metastasis. Cancer Metastasis Rev. 2015, 34, 753–764.

    Article  CAS  Google Scholar 

  53. Depciuch, J.; Stec, M.; Klebowski, B.; Maximenko, A.; Drzymała, E.; Baran, J.; Parlinska-Wojtan, M. Size effect of platinum nanoparticles in simulated anticancer photothermal therapy. Photodiagnosis Photodyn. Ther. 2020, 29, 101594.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Medical Science and Technology Program of Shanxi Province (No. 2020XM01), Shanxi “1331” Project Quality and Efficiency Improvement Plan (No. 1331KFC), Applied Basic Research Program of Shanxi Province (Nos. 201801D221408 and 201901D211320), Supporting Project for Returned Overseas Researchers of Shanxi Province (No. 2020081), and partially by the National Natural Science Foundation of China (Nos. 81801858, 22007063, and 82170523). The authors thank the Core Facility Center of Shanxi Medical University for providing TEM, flow cytometry and other technical services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhou or Ji-Min Cao.

Electronic Supplementary Material

12274_2022_4404_MOESM1_ESM.pdf

Platinum nanoparticles promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DP., Shen, J., Qin, CY. et al. Platinum nanoparticles promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation. Nano Res. 15, 7366–7377 (2022). https://doi.org/10.1007/s12274-022-4404-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4404-5

Keywords

Navigation