Skip to main content
Log in

Cathepsin B-responsive prodrugs for cancer-targeted therapy: Recent advances and progress for clinical translation

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The cathepsin B-responsive prodrugs are promising strategies to reduce the serious adverse effects of anticancer drugs by improving the cancer selectivity that can be specifically activated by overexpressed cathepsin B in targeted cancer cells. However, clinical translation of such therapeutic approaches has been restricted by low antitumor efficacy that is mainly attributable to undesirable pharmacokinetic profiles and inefficient tumor-targeting of cathepsin B-responsive prodrugs, due to their small-molecule structure. In recent decades, many researchers have widely investigated the drug delivery system (DDS) to improve the in vivo pharmacokinetic profiles and tumor-targeting efficiency of cathepsin B-responsive prodrugs via the application of polymers, dendrimers, antibodies, lipids, and inorganic nanoparticles as drug carriers. In addition, the potential therapeutic efficacy of DDS for cathepsin B-responsive prodrugs is demonstrated in multiple studies and combinatorial treatment with typical therapeutic modalities can effectively overcome the challenges of tumor heterogeneity and multidrug resistance. In this review, recent advances and progress of new DDS for cathepsin B-responsive prodrugs are outlined, and their clinical trials are discussed. Besides, potential challenges and the outlooks for clinical translation of cathepsin B-responsive prodrugs are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pathania, D.; Millard, M.; Neamati, N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 2009, 61, 1250–1275.

    Article  CAS  Google Scholar 

  2. Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170.

    Article  CAS  Google Scholar 

  3. Petru, E.; Schmähl, D. Cytotoxic chemotherapy-induced second primary neoplasms: Clinical aspects. Neoplasma 1991, 38, 147–155.

    CAS  Google Scholar 

  4. Rautio, J.; Meanwell, N. A.; Di, L.; Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018, 17, 559–587.

    Article  CAS  Google Scholar 

  5. Zeng, Z. L.; Zhang, C.; Li, J. C.; Cui, D.; Jiang, Y. Y.; Pu, K. Y. Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy. Adv. Mater. 2021, 33, 2007247.

    Article  CAS  Google Scholar 

  6. Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008, 7, 255–270.

    Article  CAS  Google Scholar 

  7. Zhang, C.; Pu, K. Y. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem. Soc. Rev. 2020, 49, 4234–4253.

    Article  CAS  Google Scholar 

  8. Um, W.; Park, J.; Ko, H.; Lim, S.; Yoon, H. Y.; Shim, M. K.; Lee, S.; Ko, Y. J.; Kim, M. J.; Park, J. H. et al. Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials 2019, 224, 119494.

    Article  CAS  Google Scholar 

  9. Kim, J.; Shim, M. K.; Cho, Y. J.; Jeon, S.; Moon, Y.; Choi, J.; Kim, J.; Lee, J.; Lee, J. W.; Kim, K. The safe and effective intraperitoneal chemotherapy with cathepsin B-specific doxorubicin prodrug nanoparticles in ovarian cancer with peritoneal carcinomatosis. Biomaterials 2021, 279, 121189.

    Article  CAS  Google Scholar 

  10. Sun, I. C.; Yoon, H. Y.; Lim, D. K.; Kim, K. Recent trends in in situ enzyme-activatable prodrugs for targeted cancer therapy. Bioconjugate Chem. 2020, 31, 1012–1024.

    Article  CAS  Google Scholar 

  11. Shim, M. K.; Yoon, H. Y.; Lee, S.; Jo, M. K.; Park, J.; Kim, J. H.; Jeong, S. Y.; Kwon, I. C.; Kim, K. Caspase-3/-7-specific metabolic precursor for bioorthogonal tracking of tumor apoptosis. Sci. Rep. 2017, 7, 16635.

    Article  Google Scholar 

  12. Shim, M. K.; Yang, S.; Sun, I. C.; Kim, K. Tumor-activated carrier-free prodrug nanoparticles for targeted cancer immunotherapy: Preclinical evidence for safe and effective drug delivery. Adv. Drug Deliv. Rev. 2022, 183, 114177.

    Article  Google Scholar 

  13. Ruan, H.; Hao, S. S.; Young, P.; Zhang, H. T. Targeting cathepsin B for cancer therapies. Horiz. Cancer Res. 2015, 56, 23–40.

    CAS  Google Scholar 

  14. Zhang, C.; Zeng, Z. L.; Cui, D.; He, S. S.; Jiang, Y. Y.; Li, J. C.; Huang, J. G.; Pu, K. Y. Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nat. Commun. 2021, 12, 2934.

    Article  CAS  Google Scholar 

  15. Shim, M. K.; Yoon, H. Y.; Ryu, J. H.; Koo, H.; Lee, S.; Park, J. H.; Kim, J. H.; Lee, S.; Pomper, M. G.; Kwon, I. C. et al. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angew. Chem., Int. Ed. 2016, 55, 14698–14703.

    Article  CAS  Google Scholar 

  16. Reinheckel, T.; Deussing, J.; Roth, W.; Peters, C. Towards specific functions of lysosomal cysteine peptidases: Phenotypes of mice deficient for cathepsin B or cathepsin L. Biol. Chem. 2001, 382, 735–742.

    CAS  Google Scholar 

  17. Aggarwal, N.; Sloane, B. F. Cathepsin B: Multiple roles in cancer. Proteomics Clin. Appl. 2014, 8, 427–437.

    Article  CAS  Google Scholar 

  18. Zhong, Y. J.; Shao, L. H.; Li, Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int. J. Oncol. 2013, 42, 373–383.

    Article  CAS  Google Scholar 

  19. Shim, M. K.; Park, J.; Yoon, H. Y.; Lee, S.; Um, W.; Kim, J. H.; Kang, S. W.; Seo, J. W.; Hyun, S. W.; Park, J. H. et al. Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. J. Control. Release 2019, 294, 376–389.

    Article  CAS  Google Scholar 

  20. Moon, Y.; Shim, M. K.; Choi, J.; Yang, S.; Kim, J.; Yun, W. S.; Cho, H.; Park, J. Y.; Kim, Y.; Seong, J. K. et al. Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death. Theranostics 2022, 12, 1999–2014.

    Article  CAS  Google Scholar 

  21. Cho, H.; Shim, M. K.; Yang, S.; Song, S.; Moon, Y.; Kim, J.; Byun, Y.; Ahn, C. H.; Kim, K. Cathepsin B-overexpressed tumor cell activatable albumin-binding doxorubicin prodrug for cancer-targeted therapy. Pharmaceutics 2021, 14, 83.

    Article  Google Scholar 

  22. Tang, L.; Duan, R.; Zhong, Y. J.; Firestone, R. A.; Hong, Y. P.; Li, J. G.; Xin, Y. C.; Wu, H. L.; Li, Y. Synthesis, identification and in vivo studies of tumor-targeting agent peptide doxorubicin (PDOX) to treat peritoneal carcinomatosis of gastric cancer with similar efficacy but reduced toxicity. Mol. Cancer 2014, 13, 44.

    Article  Google Scholar 

  23. de Groot, F. M. H.; Broxterman, H. J.; Adams, H. P. H. M.; van Vliet, A.; Tesser, G. I.; Elderkamp, Y. W.; Schraa, A. J.; Kok, R. J.; Molema, G.; Pinedo, H. M. et al. Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol. Cancer Ther. 2002, 1, 901–911.

    CAS  Google Scholar 

  24. Dubowchik, G. M.; Firestone, R. A.; Padilla, L.; Willner, D.; Hofstead, S. J.; Mosure, K.; Knipe, J. O.; Lasch, S. J.; Trail, P. A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: Model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjugate Chem. 2002, 13, 855–869.

    Article  CAS  Google Scholar 

  25. Yang, B.; Gao, J.; Pei, Q.; Xu, H. X.; Yu, H. J. Engineering prodrug nanomedicine for cancer immunotherapy. Adv. Sci. 2020, 7, 2002365.

    Article  CAS  Google Scholar 

  26. Bertrand, N.; Wu, J.; Xu, X. Y.; Kamaly, N.; Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25.

    Article  CAS  Google Scholar 

  27. Lim, S.; Park, J.; Shim, M. K.; Um, W.; Yoon, H. Y.; Ryu, J. H.; Lim, D. K.; Kim, K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019, 9, 7906–7923.

    Article  CAS  Google Scholar 

  28. Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306–1323.

    Article  CAS  Google Scholar 

  29. Li, Y. N.; Mei, T.; Han, S. P.; Han, T.; Sun, Y. B.; Zhang, H.; An, F. F. Cathepsin B-responsive nanodrug delivery systems for precise diagnosis and targeted therapy of malignant tumors. Chin. Chem. Lett. 2020, 31, 3027–3040.

    Article  CAS  Google Scholar 

  30. Delplace, V.; Couvreur, P.; Nicolas, J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym. Chem. 2014, 5, 1529–1544.

    Article  CAS  Google Scholar 

  31. Dragojevic, S.; Ryu, J. S.; Raucher, D. Polymer-based prodrugs: Improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules 2015, 20, 21750–21769.

    Article  CAS  Google Scholar 

  32. Duncan, R.; Kopečková-Rejmanová, P.; Strohalm, J.; Hume, I.; Cable, H. C.; Pohl, J.; Lloyd, J. B.; Kopeček, J. Anticancer agents coupled to N-(2-hydroxypropyl) methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br. J. Cancer 1987, 55, 165–174.

    Article  CAS  Google Scholar 

  33. Kopeček, J.; Baẑilová, H. Poly[N-(2-hydroxypropyl) methacrylamide]—I. Radical polymerization and copolymerization. Eur. Polym. J. 1973, 9, 7–14.

    Article  Google Scholar 

  34. Yang, J. Y.; Kopeček, J. The light at the end of the tunnel—Second generation HPMA conjugates for cancer treatment. Curr. Opin. Colloid Interface Sci. 2017, 31, 30–42.

    Article  Google Scholar 

  35. Duncan, R. Development of HPMA copolymer-anticancer conjugates: Clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 2009, 61, 1131–1148.

    Article  CAS  Google Scholar 

  36. Seymour, L. W.; Ferry, D. R.; Kerr, D. J.; Rea, D.; Whitlock, M.; Poyner, R.; Boivin, C.; Hesslewood, S.; Twelves, C.; Blackie, R. et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 2009, 34, 1629–1636.

    Article  CAS  Google Scholar 

  37. Julyan, P. J.; Seymour, L. W.; Ferry, D. R.; Daryani, S.; Boivin, C. M.; Doran, J.; David, M.; Anderson, D.; Christodoulou, C.; Young, A. M. et al. Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J. Control. Release 1999, 57, 281–290.

    Article  CAS  Google Scholar 

  38. Terwogt, J. M. M.; ten Bokkel Huinink, W. W.; Schellens, J. H. M.; Schot, M.; Mandjes, I. A. M.; Zurlo, M. G.; Rocchetti, M.; Rosing, H.; Koopman, F. J.; Beijnen, J. H. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anti-Cancer Drugs 2001, 12, 315–323.

    Article  CAS  Google Scholar 

  39. Schoemaker, N. E.; van Kesteren, C.; Rosing, H.; Jansen, S.; Swart, M.; Lieverst, J.; Fraier, D.; Breda, M.; Pellizzoni, C.; Spinelli, R. et al. A phase I and pharmacokinetic study of MAG-CPT, a water-soluble polymer conjugate of camptothecin. Br. J. Cancer 2002, 87, 608–614.

    Article  CAS  Google Scholar 

  40. Dvořák, M.; Kopečková, P.; Kopeček, J. High-molecular weight HPMA copolymer-adriamycin conjugates. J. Control. Release 1999, 60, 321–332.

    Article  Google Scholar 

  41. Shiah, J. G.; Dvořák, M.; Kopečková, P.; Sun, Y.; Peterson, C. M.; Kopeček, J. Biodistribution and antitumour efficacy of long-circulating N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates in nude mice. Eur. J. Cancer 2001, 37, 131–139.

    Article  CAS  Google Scholar 

  42. Pan, H. Z.; Sima, M.; Miller, S. C.; Kopečková, P.; Yang, J. Y.; Kopeček, J. Efficiency of high molecular weight backbone degradable HPMA copolymer-prostaglandin E1 conjugate in promotion of bone formation in ovariectomized rats. Biomaterials 2013, 34, 6528–6538.

    Article  CAS  Google Scholar 

  43. Zhang, R.; Luo, K.; Yang, J. Y.; Sima, M.; Sun, Y. E.; Janát-Amsbury, M. M.; Kopeček, J. Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J. Control. Release 2013, 166, 66–74.

    Article  CAS  Google Scholar 

  44. Yang, J. Y.; Luo, K.; Pan, H. Z.; Kopečková, P.; Kopeček, J. Synthesis of biodegradable multiblock copolymers by click coupling of RAFT-generated heterotelechelic polyHPMA conjugates. React. Funct. Polym. 2011, 71, 294–302.

    Article  CAS  Google Scholar 

  45. Pan, H. Z.; Yang, J. Y.; Kopečková, P.; Kopeček, J. Backbone degradable multiblock N-(2-hydroxypropyl)methacrylamide copolymer conjugates via reversible addition-fragmentation chain transfer polymerization and thiol—ene coupling reaction. Biomacromolecules 2011, 12, 247–252.

    Article  CAS  Google Scholar 

  46. Pan, H. Z.; Sima, M.; Yang, J. Y.; Kopeček, J. Synthesis of long-circulating, backbone degradable HPMA copolymer-doxorubicin conjugates and evaluation of molecular-weight-dependent antitumor efficacy. Macromol. Biosci. 2013, 13, 155–160.

    Article  CAS  Google Scholar 

  47. Sponchioni, M.; Morosi, L.; Lupi, M.; Palmiero, U. C. Poly(HPMA)-based copolymers with biodegradable side chains able to self assemble into nanoparticles. RSC Adv. 2017, 7, 50981–50992.

    Article  CAS  Google Scholar 

  48. Yang, Y.; Pan, D. Y.; Luo, K.; Li, L.; Gu, Z. W. Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 2013, 34, 8430–8443.

    Article  CAS  Google Scholar 

  49. Dai, Y.; Ma, X. L.; Zhang, Y. H.; Chen, K.; Tang, J. Z.; Gong, Q. Y.; Luo, K. A biocompatible and cathepsin B sensitive nanoscale system of dendritic polyHPMA-gemcitabine prodrug enhances antitumor activity markedly. Biomater. Sci. 2018, 6, 2976–2986.

    Article  CAS  Google Scholar 

  50. Cai, H.; Dai, X. H.; Wang, X. M.; Tan, P.; Gu, L.; Luo, Q.; Zheng, X. L.; Li, Z. Q.; Zhu, H. Y.; Zhang, H. et al. A nanostrategy for efficient imaging-guided antitumor therapy through a stimuli-responsive branched polymeric prodrug. Adv. Sci. 2020, 7, 1903243.

    Article  CAS  Google Scholar 

  51. Yang, J. Y.; Zhang, R.; Pan, H. Z.; Li, Y. L.; Fang, Y. X.; Zhang, L. B.; Kopeček, J. Backbone degradable N-(2-hydroxypropyl)methacrylamide copolymer conjugates with gemcitabine and paclitaxel: Impact of molecular weight on activity toward human ovarian carcinoma xenografts. Mol. Pharmaceutics 2017, 14, 1384–1394.

    Article  CAS  Google Scholar 

  52. Zhang, R.; Yang, J. Y.; Sima, M.; Zhou, Y.; Kopeček, J. Sequential combination therapy of ovarian cancer with degradable N-(2-hydroxypropyl)methacrylamide copolymer paclitaxel and gemcitabine conjugates. Proc. Natl. Acad. Sci. USA 2014, 111, 12181–12186.

    Article  CAS  Google Scholar 

  53. Duangjai, A.; Luo, K.; Zhou, Y.; Yang, J. Y.; Kopeček, J. Combination cytotoxicity of backbone degradable HPMA copolymer gemcitabine and platinum conjugates toward human ovarian carcinoma cells. Eur. J. Pharm. Biopharm. 2014, 87, 187–196.

    Article  CAS  Google Scholar 

  54. Zhou, Y.; Yang, J. Y.; Zhang, R.; Kopeček, J. Combination therapy of prostate cancer with HPMA copolymer conjugates containing PI3K/mTOR inhibitor and docetaxel. Eur. J. Pharm. Biopharm. 2015, 89, 107–115.

    Article  CAS  Google Scholar 

  55. Zhou, Y.; Yang, J. Y.; Rhim, J. S.; Kopeček, J. HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable antitumor effects. J. Control. Release 2013, 172, 946–953.

    Article  CAS  Google Scholar 

  56. Maloth, K. N.; Velpula, N.; Kodangal, S.; Sangmesh, M.; Vellamchetla, K.; Ugrappa, S.; Meka, N. Photodynamic therapy—A non-invasive treatment modality for precancerous lesions. J. Lasers Med. Sci. 2016, 7, 30–36.

    Article  Google Scholar 

  57. Dalpiaz, A.; Paganetto, G.; Botti, G.; Pavan, B. Cancer stem cells and nanomedicine: New opportunities to combat multidrug resistance. Drug Discov. Today 2020, 25, 1651–1667.

    Article  CAS  Google Scholar 

  58. Zhen, S. J.; Yi, X. Q.; Zhao, Z. J.; Lou, X. D.; Xia, F.; Tang, B. Z. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 2019, 218, 119330.

    Article  CAS  Google Scholar 

  59. Krinick, N. L.; Sun, Y.; Joyner, D.; Spikes, J. D.; Straight, R. C.; Kopeček, J. A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J. Biomater. Sci., Polym. Ed. 1994, 5, 303–324.

    Article  CAS  Google Scholar 

  60. Peterson, C. M.; Lu, J. M.; Sun, Y.; Peterson, C. A.; Shiah, J. G.; Straight, R. C.; Kopeček, J. Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl)methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res. 1996, 56, 3980–3985.

    CAS  Google Scholar 

  61. Shiah, J. G.; Sun, Y.; Kopečková, P.; Peterson, C. M.; Straight, R. C.; Kopeček, J. Combination chemotherapy and photodynamic therapy of targetable N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin/mesochlorin e6-OV-TL 16 antibody immunoconjugates. J. Control. Release 2001, 74, 249–253.

    Article  CAS  Google Scholar 

  62. Scomparin, A.; Florindo, H. F.; Tiram, G.; Ferguson, E. L.; Satchi-Fainaro, R. Two-step polymer-and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv. Drug Deliv. Rev. 2017, 118, 52–64.

    Article  CAS  Google Scholar 

  63. Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem., Int. Ed. 2006, 45, 1198–1215.

    Article  CAS  Google Scholar 

  64. Satchi, R.; Connors, T. A.; Duncan, R. PDEPT: Polymer-directed enzyme prodrug therapy. Br. J. Cancer 2001, 35, 1070–1076.

    Article  Google Scholar 

  65. Tesniere, A.; Panaretakis, T.; Kepp, O.; Apetoh, L.; Ghiringhelli, F.; Zitvogel, L.; Kroemer, G. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008, 15, 3–12.

    Article  CAS  Google Scholar 

  66. Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875.

    Article  CAS  Google Scholar 

  67. Bilusic, M.; Gulley, J. L. Editorial: Local immunotherapy: A way to convert tumors from “cold” to “hot”. JNCI:J. Natl. Cancer Inst. 2017, 109, djx132.

    Article  Google Scholar 

  68. Li, L.; Li, Y. C.; Yang, C. H.; Radford, D. C.; Wang, J. W.; Janát-Amsbury, M.; Kopeček, J.; Yang, J. Y. Inhibition of immunosuppressive tumors by polymer-assisted inductions of immunogenic cell death and multivalent PD-L1 crosslinking. Adv. Funct. Mater. 2020, 30, 1908961.

    Article  CAS  Google Scholar 

  69. Li, L.; Wang, J. W.; Radford, D. C.; Kopeček, J.; Yang, J. Y. Combination treatment with immunogenic and anti-PD-L1 polymer-drug conjugates of advanced tumors in a transgenic MMTV-PyMT mouse model of breast cancer. J. Control. Release 2021, 332, 652–659.

    Article  CAS  Google Scholar 

  70. Liang, L.; Lin, S. W.; Dai, W. B.; Lu, J. K.; Yang, T. Y.; Xiang, Y.; Zhang, Y.; Li, R. T.; Zhang, Q. Novel cathepsin B-sensitive paclitaxel conjugate: Higher water solubility, better efficacy and lower toxicity. J. Control. Release 2012, 160, 618–629.

    Article  CAS  Google Scholar 

  71. Lin, J. Y.; Pan, Z.; Song, L.; Zhang, Y. M.; Li, Y.; Hou, Z. Q.; Lin, C. J. Design and in vitro evaluation of self-assembled indometacin prodrug nanoparticles for sustained/controlled release and reduced normal cell toxicity. Appl. Surf. Sci. 2017, 425, 674–681.

    Article  CAS  Google Scholar 

  72. Zhang, X.; Tang, K. Y.; Wang, H.; Liu, Y. Q.; Bao, B.; Fang, Y. F.; Zhang, X. W.; Lu, W. Design, synthesis, and biological evaluation of new cathepsin B-sensitive camptothecin nanoparticles equipped with a novel multifuctional linker. Bioconjugate Chem. 2016, 27, 1267–1275.

    Article  CAS  Google Scholar 

  73. Lu, S.; Lei, X.; Ren, H.; Zheng, S. Y.; Qiang, J.; Zhang, Z. J.; Chen, Y. H.; Wei, T. W.; Wang, F.; Chen, X. Q. PEGylated dimeric BODIPY photosensitizers as nanocarriers for combined chemotherapy and cathepsin B-activated photodynamic therapy in 3D tumor spheroids. ACS Appl. Bio Mater. 2020, 3, 3835–3845.

    Article  CAS  Google Scholar 

  74. Chapman, A. P. PEGylated antibodies and antibody fragments for improved therapy: A review. Adv. Drug Deliv. Rev. 2002, 54, 531–545.

    Article  CAS  Google Scholar 

  75. Veronese, F. M. PEGylated Protein Drugs: Basic Science and Clinical Applications; Birkhäuser: Basel, 2009.

    Book  Google Scholar 

  76. Dai, C. Y.; Fu, Y.; Li, B.; Wang, Y. G.; Zhang, X.; Wang, J. C.; Zhang, Q. Linkage with cathepsin B-sensitive dipeptide promotes the in vitro and in vivo anticancer activity of PEGylated tumor necrosis factor-alpha (TNF-α) against murine fibrosarcoma. Sci. China Life Sci. 2011, 54, 128–138.

    Article  CAS  Google Scholar 

  77. Dai, C. Y.; Fu, Y.; Chen, S. C.; Li, B.; Yao, B.; Liu, W. H.; Zhu, L. Q.; Chen, N.; Chen, J.; Zhang, Q. Preparation and evaluation of a new releasable PEGylated tumor necrosis factor-α (TNF-α) conjugate for therapeutic application. Sci. China Life Sci. 2013, 56, 51–58.

    Article  CAS  Google Scholar 

  78. Tan, P.; Cai, H.; Wei, Q.; Tang, X. D.; Zhang, Q. F.; Kopytynski, M.; Yang, J. X.; Yi, Y.; Zhang, H.; Gong, Q. Y. et al. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021, 277, 121061.

    Article  CAS  Google Scholar 

  79. Luo, Q.; Lin, L.; Huang, Q.; Duan, Z.; Gu, L.; Zhang, H.; Gu, Z.; Gong, Q.; Luo, K. Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater. 2022, 143, 320–332.

    Article  CAS  Google Scholar 

  80. Herceg, V.; Bouilloux, J.; Janikowska, K.; Allámann, E.; Lange, N. Cathepsin B-cleavable cyclopeptidic chemotherapeutic prodrugs. Molecules 2020, 25, 4285.

    Article  CAS  Google Scholar 

  81. Dai, J.; Hu, J. J.; Dong, X. Q.; Chen, B.; Dong, X. Y.; Liu, R.; Xia, F.; Lou, X. D. Deep downregulation of PD-L1 by caged peptide-conjugated AIEgen/miR-140 nanoparticles for enhanced immunotherapy. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202117798.

  82. Coessens, V.; Schacht, E. H.; Domurado, D. Synthesis and in vitro stability of macromolecular prodrugs of norfloxacin. J. Control. Release 1997, 47, 283–291.

    Article  CAS  Google Scholar 

  83. Nichifor, M.; Schacht, E. H.; Seymour, L. W. Polymeric prodrugs of 5-fluorouracil. J. Control. Release 1997, 48, 165–178.

    Article  CAS  Google Scholar 

  84. Harada, M.; Sakakibara, H.; Yano, T.; Suzuki, T.; Okuno, S. Determinants for the drug release from T-0128, camptothecin analogue-carboxymethyl dextran conjugate. J. Control. Release 2000, 69, 399–412.

    Article  CAS  Google Scholar 

  85. Ouchi, T.; Tada, M.; Matsumoto, M.; Ohya, Y.; Hasegawa, K.; Arai, Y.; Kadowaki, K.; Akao, S.; Matsumoto, T.; Suzuki, S. et al. Design of macromolecular prodrug of 5-fluorouracil using N-acetylpolygalactosamine as a targeting carrier to hepatoma. React. Funct. Polym. 1998, 37, 235–244.

    Article  CAS  Google Scholar 

  86. Ouchi, T.; Tada, M.; Matsumoto, M.; Ohya, Y.; Hasegawa, K.; Arai, Y.; Kadowaki, K.; Akao, S.; Matsumoto, T.; Suzuki, S. et al. Design of lysosomotropic macromolecular prodrug of doxorubicin using N-acetyl-α-1, 4-polygalactosamine as a targeting carrier to hepatoma tissue. J. Bioact. Compat. Polym. 1998, 13, 257–269.

    Article  CAS  Google Scholar 

  87. Pan, X.; Chen, J. R.; Yang, M. D.; Wu, J.; He, G. H.; Yin, Y. H.; He, M.; Xu, W. J.; Xu, P. H.; Cai, W. Q. et al. Enzyme/pH dual-responsive polymer prodrug nanoparticles based on 10-hydroxycamptothecin-carboxymethylchitosan for enhanced drug stability and anticancer efficacy. Eur. Polym. J. 2019, 117, 372–381.

    Article  CAS  Google Scholar 

  88. Zhang, X. D.; He, F.; Xiang, K. Q.; Zhang, J. J.; Xu, M. Z.; Long, P. P.; Su, H. J.; Gan, Z. H.; Yu, Q. S. CD44-targeted facile enzymatic activatable chitosan nanoparticles for efficient antitumor therapy and reversal of multidrug resistance. Biomacromolecules 2018, 19, 883–895.

    Article  CAS  Google Scholar 

  89. Singer, J. W.; Baker, B.; de Vries, P.; Kumar, A.; Shaffer, S.; Vawter, E.; Bolton, M.; Garzone, P. Poly-(L)-glutamic acid-paclitaxel (CT-2103)[XYOTAX™], a biodegradable polymeric drug conjugate. In Polymer Drugs in the Clinical Stage; Maeda, H.; Kabanov, A.; Kataoka, K.; Okano, T., Eds.; Springer: Boston, 2004; pp 81–99.

    Chapter  Google Scholar 

  90. Langer, C. J. CT-2103: A novel macromolecular taxane with potential advantages compared with conventional taxanes. Clin. Lung Cancer 2004, 6, S85–S88.

    Article  CAS  Google Scholar 

  91. De Jesús, O. L. P.; Ihre, H. R.; Gagne, L.; Fréchet, J. M. J.; Szoka, F. C. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjugate Chem. 2002, 13, 453–461.

    Article  Google Scholar 

  92. Satsangi, A.; Roy, S. S.; Satsangi, R. K.; Vadlamudi, R. K.; Ong, J. L. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol. Pharmaceutics 2014, 11, 1906–1918.

    Article  CAS  Google Scholar 

  93. Satsangi, A.; Roy, S. S.; Satsangi, R. K.; Tolcher, A. W.; Vadlamudi, R. K.; Goins, B.; Ong, J. L. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy. Biomaterials 2015, 59, 88–101.

    Article  CAS  Google Scholar 

  94. Calderón, M.; Graeser, R.; Kratz, F.; Haag, R. Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg. Med. Chem. Lett. 2009, 19, 3725–3728.

    Article  Google Scholar 

  95. Malik, N.; Evagorou, E. G.; Duncan, R. Dendrimer-platinate: A novel approach to cancer chemotherapy. Anticancer Drugs 1999, 10, 767–776.

    Article  CAS  Google Scholar 

  96. Etrych, T.; Strohalm, J.; Chytil, P.; Černoch, P.; Starovoytova, L.; Pechar, M.; Ulbrich, K. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur. J. Pharm. Sci. 2011, 42, 527–539.

    Article  CAS  Google Scholar 

  97. Lee, S. J.; Jeong, Y. I.; Park, H. K.; Kang, D. H.; Oh, J. S.; Lee, S. G.; Lee, H. C. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery. Int. J. Nanomedicine 2015, 10, 5489–5503.

    CAS  Google Scholar 

  98. Zhang, C. Y.; Pan, D. Y.; Luo, K.; Li, N.; Guo, C. H.; Zheng, X. L.; Gu, Z. W. Dendrimer-doxorubicin conjugate as enzyme-sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polym. Chem. 2014, 5, 5227–5235.

    Article  CAS  Google Scholar 

  99. Zhang, C. Y.; Pan, D. Y.; Li, J.; Hu, J. N.; Bains, A.; Guys, N.; Zhu, H. Y.; Li, X. H.; Luo, K.; Gong, Q. Y. et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater. 2017, 55, 153–162.

    Article  CAS  Google Scholar 

  100. Stein, E. M.; Stein, A.; Walter, R. B.; Fathi, A. T.; Lancet, J. E.; Kovacsovics, T. J.; Advani, A. S.; DeAngelo, D. J.; O’Meara, M. M.; Zhao, B. T. et al. Interim analysis of a phase 1 trial of SGN-CD33A in patients with CD33-positive acute myeloid leukemia (AML). Blood 2014, 124, 623.

    Article  Google Scholar 

  101. Li, N.; Cai, H.; Jiang, L.; Hu, J. N.; Bains, A.; Hu, J.; Gong, Q. Y.; Luo, K.; Gu, Z. W. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl. Mater. Interfaces 2017, 9, 6865–6877.

    Article  CAS  Google Scholar 

  102. Chau, C. H.; Steeg, P. S.; Figg, W. D. Antibody-drug conjugates for cancer. Lancet 2019, 394, 793–804.

    Article  CAS  Google Scholar 

  103. Lu, J.; Jiang, F.; Lu, A. P.; Zhang, G. Linkers having a crucial role in antibody-drug conjugates. Int. J. Mol. Sci. 2016, 17, 561.

    Article  Google Scholar 

  104. McCombs, J. R.; Owen, S. C. Antibody drug conjugates: Design and selection of linker, payload and conjugation chemistry. AAPS J. 2015, 17, 339–351.

    Article  CAS  Google Scholar 

  105. Bargh, J. D.; Isidro-Llobet, A.; Parker, J. S.; Spring, D. R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev. 2019, 48, 4361–4374.

    Article  CAS  Google Scholar 

  106. Tsuchikama, K.; An, Z. Q. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell 2018, 9, 33–46.

    Article  CAS  Google Scholar 

  107. Mondal, D.; Ford, J.; Pinney, K. G. Improved methodology for the synthesis of a cathepsin B cleavable dipeptide linker, widely used in antibody-drug conjugate research. Tetrahedron Lett. 2018, 59, 3594–3599.

    Article  CAS  Google Scholar 

  108. Yao, H. Z.; Jiang, F.; Lu, A. P.; Zhang, G. Methods to design and synthesize antibody-drug conjugates (ADCs). Int. J. Mol. Sci. 2016, 17, 194.

    Article  Google Scholar 

  109. Gikanga, B.; Adeniji, N. S.; Patapoff, T. W.; Chih, H. W.; Yi, L. Cathepsin B cleavage of vcMMAE-based antibody-drug conjugate is not drug location or monoclonal antibody carrier specific. Bioconjugate Chem. 2016, 27, 1040–1049.

    Article  CAS  Google Scholar 

  110. Boylan, N. J.; Zhou, W.; Proos, R. J.; Tolbert, T. J.; Wolfe, J. L.; Laurence, J. S. Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates. Bioconjugate Chem. 2013, 24, 1008–1016.

    Article  CAS  Google Scholar 

  111. Poudel, Y. B.; Chowdari, N. S.; Cheng, H.; Iwuagwu, C. I.; King, H. D.; Kotapati, S.; Passmore, D.; Rampulla, R.; Mathur, A.; Vite, G. et al. Chemical modification of linkers provides stable linker-payloads for the generation of antibody-drug conjugates. ACS Med. Chem. Lett. 2020, 11, 2190–2194.

    Article  CAS  Google Scholar 

  112. Wei, B. Q.; Gunzner-Toste, J.; Yao, H.; Wang, T.; Wang, J.; Xu, Z. J.; Chen, J. H.; Wai, J.; Nonomiya, J.; Tsai, S. P. et al. Discovery of peptidomimetic antibody-drug conjugate linkers with enhanced protease specificity. J. Med. Chem. 2018, 61, 989–1000.

    Article  CAS  Google Scholar 

  113. Kern, J. C.; Dooney, D.; Zhang, R. N.; Liang, L. D.; Brandish, P. E.; Cheng, M. G.; Feng, G.; Beck, A.; Bresson, D.; Firdos, J. et al. Novel phosphate modified cathepsin B linkers: Improving aqueous solubility and enhancing payload scope of ADCs. Bioconjugate Chem. 2016, 27, 2081–2088.

    Article  CAS  Google Scholar 

  114. Chen, H.; Lin, Z. T.; Arnst, K. E.; Miller, D. D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules 2017, 22, 1281.

    Article  Google Scholar 

  115. Birrer, M. J.; Moore, K. N.; Betella, I.; Bates, R. C. Antibody-drug conjugate-based therapeutics: State of the science. JNCI:J. Natl. Cancer Inst. 2019, 111, 538–549.

    Article  Google Scholar 

  116. Chowdari, N. S.; Pan, C.; Rao, C.; Langley, D. R.; Sivaprakasam, P.; Sufi, B.; Derwin, D.; Wang, Y. C.; Kwok, E.; Passmore, D. et al. Uncialamycin as a novel payload for antibody drug conjugate (ADC) based targeted cancer therapy. Bioorg. Med. Chem. Lett. 2019, 29, 466–470.

    Article  CAS  Google Scholar 

  117. Poudel, Y. B.; Rao, C.; Kotapati, S.; Deshpande, M.; Thevanayagam, L.; Pan, C.; Cardarelli, J.; Chowdari, N.; Kaspady, M.; Samikannu, R. et al. Design, synthesis and biological evaluation of phenol-linked uncialamycin antibody-drug conjugates. Bioorg. Med. Chem. Lett. 2020, 30, 126782.

    Article  CAS  Google Scholar 

  118. Lim, R. K. V.; Yu, S.; Cheng, B.; Li, S. J.; Kim, N. J.; Cao, Y.; Chi, V.; Kim, J. Y.; Chatterjee, A. K.; Schultz, P. G. et al. Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjugate Chem. 2015, 26, 2216–2222.

    Article  CAS  Google Scholar 

  119. Kemp, G. C.; Tiberghien, A. C.; Patel, N. V.; D’Hooge, F.; Nilapwar, S. M.; Adams, L. R.; Corbett, S.; Williams, D. G.; Hartley, J. A.; Howard, P. W. Synthesis and in vitro evaluation of SG3227, a pyrrolobenzodiazepine dimer antibody-drug conjugate payload based on sibiromycin. Bioorg. Med. Chem. Lett. 2017, 27, 1154–1158.

    Article  CAS  Google Scholar 

  120. Tiberghien, A. C.; Levy, J. N.; Masterson, L. A.; Patel, N. V.; Adams, L. R.; Corbett, S.; Williams, D. G.; Hartley, J. A.; Howard, P. W. Design and synthesis of tesirine, a clinical antibody-drug conjugate pyrrolobenzodiazepine dimer payload. ACS Med. Chem. Lett. 2016, 7, 983–987.

    Article  CAS  Google Scholar 

  121. Smith, S. W.; Jammalamadaka, V.; Borkin, D.; Zhu, J. Y.; Degrado, S. J.; Lu, J.; Huang, J. Q.; Jiang, Y. P.; Jain, N.; Junutula, J. R. Design and synthesis of isoquinolidinobenzodiazepine dimers, a novel class of antibody-drug conjugate payload. ACS Med. Chem. Lett. 2018, 9, 56–60.

    Article  CAS  Google Scholar 

  122. Oflazoglu, E.; Kissler, K. M.; Sievers, E. L.; Grewal, I. S.; Gerber, H. P. Combination of the anti-CD30-auristatin-E antibody-drug conjugate (SGN-35) with chemotherapy improves antitumour activity in Hodgkin lymphoma. Br. J. Haematol. 2008, 142, 69–73.

    Article  CAS  Google Scholar 

  123. McCombs, J. R.; Chang, H. P.; Shah, D. K.; Owen, S. C. Antibody-drug conjugate and free geldanamycin combination therapy enhances anti-cancer efficacy. Int. J. Pharm. 2021, 610, 121272.

    Article  CAS  Google Scholar 

  124. Xiao, D.; Zhao, L.; Xie, F.; Fan, S. Y.; Liu, L. Q.; Li, W.; Cao, R. Y.; Li, S.; Zhong, W.; Zhou, X. B. A bifunctional molecule-based strategy for the development of theranostic antibody-drug conjugate. Theranostics 2021, 11, 2550–2563.

    Article  CAS  Google Scholar 

  125. Eoin, F.; Shankar, S.; Robert, C. M.; Masahiro, N.; Christian, R. H. R.; Takao, S.; Feiedrich, S.; Gerrit, V. M.; Michael, J. O. W.; Edward, A. D. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009, 50, S9–S14.

    Article  Google Scholar 

  126. Signorell, R. D.; Luciani, P.; Brambilla, D.; Leroux, J. C. Pharmacokinetics of lipid-drug conjugates loaded into liposomes. Eur. J. Pharm. Biopharm. 2018, 128, 188–199.

    Article  CAS  Google Scholar 

  127. Mura, S.; Bui, D. T.; Couvreur, P.; Nicolas, J. Lipid prodrug nanocarriers in cancer therapy. J. Control. Release 2015, 208, 25–41.

    Article  CAS  Google Scholar 

  128. Maksimenko, A.; Mougin, J.; Mura, S.; Sliwinski, E.; Lepeltier, E.; Bourgaux, C.; Lepêtre, S.; Zouhiri, F.; Desmaële, D.; Couvreur, P. Polyisoprenoyl gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy. Cancer Lett. 2013, 334, 346–353.

    Article  CAS  Google Scholar 

  129. Immordino, M. L.; Brusa, P.; Rocco, F.; Arpicco, S.; Ceruti, M.; Cattel, L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J. Control. Release 2004, 100, 331–346.

    Article  CAS  Google Scholar 

  130. Bulanadi, J. C.; Xue, A. Q.; Gong, X. J.; Bean, P. A.; Julovi, S. M.; de Campo, L.; Smith, R. C.; Moghaddam, M. J. Biomimetic gemcitabine-lipid prodrug nanoparticles for pancreatic cancer. ChemPlusChem 2020, 85, 1283–1291.

    Article  CAS  Google Scholar 

  131. Gaudin, A.; Song, E.; King, A. R.; Saucier-Sawyer, J. K.; Bindra, R.; Desmaële, D.; Couvreur, P.; Saltzman, W. M. PEGylated squalenoyl-gemcitabine nanoparticles for the treatment of glioblastoma. Biomaterials 2016, 105, 136–144.

    Article  CAS  Google Scholar 

  132. Coppens, E.; Desmaële, D.; Mougin, J.; Tusseau-Nenez, S.; Couvreur, P.; Mura, S. Gemcitabine lipid prodrugs: The key role of the lipid moiety on the self-assembly into nanoparticles. Bioconjugate Chem. 2021, 32, 782–793.

    Article  CAS  Google Scholar 

  133. Wu, L. M.; Zhang, F.; Chen, X. N.; Wan, J. Q.; Wang, Y. C.; Li, T. Y.; Wang, H. X. Self-assembled gemcitabine prodrug nanoparticles show enhanced efficacy against patient-derived pancreatic ductal adenocarcinoma. ACS Appl. Mater. Interfaces 2020, 12, 3327–3340.

    Article  CAS  Google Scholar 

  134. Li, Y.; Lin, J. Y.; Wu, H. J.; Chang, Y.; Yuan, C. H.; Liu, C.; Wang, S.; Hou, Z. Q.; Dai, L. Z. Orthogonally functionalized nanoscale micelles for active targeted codelivery of methotrexate and mitomycin C with synergistic anticancer effect. Mol. Pharmaceutics 2015, 12, 769–782.

    Article  CAS  Google Scholar 

  135. Maksimenko, A.; Alami, M.; Zouhiri, F.; Brion, J. D.; Pruvost, A.; Mougin, J.; Hamze, A.; Boissenot, T.; Provot, O.; Desmaële, D. et al. Therapeutic modalities of squalenoyl nanocomposites in colon cancer: An ongoing search for improved efficacy. ACS Nano 2014, 8, 2018–2032.

    Article  CAS  Google Scholar 

  136. Ding, Y.; Sun, Z. Q.; Tong, Z. R.; Zhang, S. T.; Min, J.; Xu, Q. H.; Zhou, L. Z.; Mao, Z. W.; Xia, H. B.; Wang, W. L. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics 2020, 10, 5195–5208.

    Article  CAS  Google Scholar 

  137. Ye, W. Y.; Han, H. J.; Li, H.; Jin, Q.; Wu, Y. Z.; Chakrabortty, S.; Weil, T.; Ji, J. Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Prog. Nat. Sci. Mater. Int. 2020, 30, 711–717.

    Article  CAS  Google Scholar 

  138. Yang, Y. M.; Aw, J.; Chen, K.; Liu, F.; Padmanabhan, P.; Hou, Y. L.; Cheng, Z.; Xing, B. G. Enzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging. Chem.—Asian J. 2011, 6, 1381–1389.

    Article  CAS  Google Scholar 

  139. Han, H. J.; Valdepérez, D.; Jin, Q.; Yang, B.; Li, Z. H.; Wu, Y. L.; Pelaz, B.; Parak, W. J.; Ji, J. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano 2017, 11, 1281–1291.

    Article  CAS  Google Scholar 

  140. Zhang, H. J.; Zhao, X.; Chen, L. J.; Yang, C. X.; Yan, X. P. pH-driven targeting nanoprobe with dual-responsive drug release for persistent luminescence imaging and chemotherapy of tumor. Anal. Chem. 2019, 92, 1179–1188.

    Article  Google Scholar 

  141. Cheng, Y. J.; Luo, G. F.; Zhu, J. Y.; Xu, X. D.; Zeng, X.; Cheng, D. B.; Li, Y. M.; Wu, Y.; Zhang, X. Z.; Zhuo, R. X. et al. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 9078–9087.

    Article  CAS  Google Scholar 

  142. de la Torre, C.; Mondragón, L.; Coll, C.; Sancenón, F.; Marcos, M. D.; Martínez-Máñez, R.; Amorós, P.; Pérez-Payá, E.; Orzáez, M. Cathepsin-B induced controlled release from peptide-capped mesoporous silica nanoparticles. Chem.—Eur.J. 2014, 20, 15309–15314.

    Article  CAS  Google Scholar 

  143. Zheng, F. F.; Zhang, P. H.; Xi, Y.; Huang, K. K.; Min, Q. H.; Zhu, J. J. Peptide-mediated core/satellite/shell multifunctional nanovehicles for precise imaging of cathepsin B activity and dualenzyme controlled drug release. NPG Asia Mater. 2017, 9, e366.

    Article  CAS  Google Scholar 

  144. Vasey, P. A.; Kaye, S. B.; Morrison, R.; Twelves, C.; Wilson, P.; Duncan, R.; Thomson, A. H.; Murray, L. S.; Hilditch, T. E.; Murray, T. et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents—Drug-polymer conjugates. Clin. Cancer Res. 1999, 5, 83–94.

    CAS  Google Scholar 

  145. Seymour, L. W.; Ferry, D. R.; Anderson, D.; Hesslewood, S.; Julyan, P. J.; Doran, R. P.; Young, A. M.; Burtles, S.; Kerr, D. J. Hepatic drug targeting: Phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol. 2002, 20, 1668–1676.

    Article  CAS  Google Scholar 

  146. Rademaker-Lakhai, J. M.; Terret, C.; Howell, S. B.; Baud, C. M.; de Boer, R. F.; Pluim, D.; Beijnen, J. H.; Schellens, J. H. M.; Droz, J. P. A phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors. Clin. Cancer Res. 2004, 10, 3386–3395.

    Article  CAS  Google Scholar 

  147. Boddy, A. V.; Plummer, E. R.; Todd, R.; Sludden, J.; Griffin, M.; Robson, L.; Cassidy, J.; Bissett, D.; Bernareggi, A.; Verrill, M. W. et al. A phase I and pharmacokinetic study of paclitaxel poliglumex (XYOTAX), investigating both 3-weekly and 2-weekly schedules. Clin. Cancer Res. 2005, 11, 7834–7840.

    Article  CAS  Google Scholar 

  148. Singer, J. W. Paclitaxel poliglumex (XYOTAX™, CT-2103): A macromolecular taxane. J. Control. Release 2005, 109, 120–126.

    Article  CAS  Google Scholar 

  149. Williams, R. Discontinued drugs in 2008: Oncology drugs. Expert Opin. Investig. Drugs 2009, 13, 1581–1594.

    Article  Google Scholar 

  150. Miller, K.; Erez, R.; Segal, E.; Shabat, D.; Satchi-Fainaro, R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew. Chem. 2009, 121, 2993–2998.

    Article  Google Scholar 

  151. Younes, A.; Yasothan, U.; Kirkpatrick, P. Brentuximab vedotin. Nat. Rev. Drug Discov. 2012, 11, 19–20.

    Article  CAS  Google Scholar 

  152. Deeks, E. D. Polatuzumab vedotin: First global approval. Drugs 2019, 79, 1467–1475.

    Article  Google Scholar 

  153. Shultes, K. C. Polatuzumab vedotin-piiq (Polivy®). Oncol. Times 2020, 42, 9.

    Article  Google Scholar 

  154. Petrylak, D. P.; Perez, R. P.; Zhang, J. S.; Smith, D. C.; Ruether, J. D.; Sridhar, S. S.; Sangha, R. S.; Lang, J. M.; Heath, E. I.; Merchan, J. R. et al. A phase I study of enfortumab vedotin (ASG-22CE; ASG-22ME): Updated analysis of patients with metastatic urothelial cancer. J. Chin. Oncol. 2017, 35, 106.

    Google Scholar 

  155. Chang, E.; Weinstock, C.; Zhang, L. J.; Charlab, R.; Dorff, S. E.; Gong, Y. T.; Hsu, V.; Li, F.; Ricks, T. K.; Song, P. F. et al. FDA approval summary: Enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res. 2021, 27, 922–927.

    Article  CAS  Google Scholar 

  156. Coleman, R. L.; Lorusso, D.; Gennigens, C.; González-Martín, A.; Randall, L.; Cibula, D.; Lund, B.; Woelber, L.; Pignata, S.; Forget, F. et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 609–619.

    Article  CAS  Google Scholar 

  157. Teicher, B. A.; Chari, R. V. J. Antibody conjugate therapeutics: Challenges and potential. Clin. Cancer Res. 2011, 17, 6389–6397.

    Article  CAS  Google Scholar 

  158. Yang, S.; Shim, M. K.; Kim, W. J.; Choi, J.; Nam, G. H.; Kim, J.; Kim, J.; Moon, Y.; Kim, H. Y.; Park, J. et al. Cancer-activated doxorubicin prodrug nanoparticles induce preferential immune response with minimal doxorubicin-related toxicity. Biomaterials 2021, 272, 120791.

    Article  CAS  Google Scholar 

  159. Kim, J.; Shim, M. K.; Yang, S.; Moon, Y.; Song, S.; Choi, J.; Kim, J.; Kim, K. Combination of cancer-specific prodrug nanoparticle with Bcl-2 inhibitor to overcome acquired drug resistance. J. Control. Release 2021, 330, 920–932.

    Article  CAS  Google Scholar 

  160. Shim, M. K.; Moon, Y.; Yang, S.; Kim, J.; Cho, H.; Lim, S.; Yoon, H. Y.; Seong, J. K.; Kim, K. Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy. Biomaterials 2020, 261, 120347.

    Article  CAS  Google Scholar 

  161. Choi, J.; Shim, M. K.; Yang, S.; Hwang, H. S.; Cho, H.; Kim, J.; Yun, W. S.; Moon, Y.; Kim, J.; Yoon, H. Y. et al. Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. ACS Nano 2021, 15, 12086–12098.

    Article  CAS  Google Scholar 

  162. Doronina, S. O.; Toki, B. E.; Torgov, M. Y.; Mendelsohn, B. A.; Cerveny, C. G.; Chace, D. F.; DeBlanc, R. L.; Gearing, R. P.; Bovee, T. D.; Siegall, C. B. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 2003, 21, 778–784.

    Article  CAS  Google Scholar 

  163. Banerjee, S.; Oza, A. M.; Birrer, M. J.; Hamilton, E. P.; Hasan, J.; Leary, A.; Moore, K. N.; Mackowiak-Matejczyk, B.; Pikiel, J.; Ray-Coquard, I. et al. Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann. Oncol. 2018, 29, 917–923.

    Article  CAS  Google Scholar 

  164. Paz-Ares, L.; Ross, H.; O’Brien, M.; Riviere, A.; Gatzemeier, U.; Von Pawel, J.; Kaukel, E.; Freitag, L.; Digel, W.; Bischoff, H. et al. Phase III trial comparing paclitaxel poliglumex vs docetaxel in the second-line treatment of non-small-cell lung cancer. Br. J. Cancer 2008, 98, 1608–1613.

    Article  CAS  Google Scholar 

  165. Tong, R.; Cheng, J. J. Anticancer polymeric nanomedicines. Polym. Rev. 2007, 47, 345–381.

    Article  CAS  Google Scholar 

  166. O’Brien, M. E. R.; Socinski, M. A.; Popovich, A. Y.; Bondarenko, I. N.; Tomova, A.; Bilynskyĭ, B. T.; Hotko, Y. S.; Ganul, V. L.; Kostinsky, I. Y.; Eisenfeld, A. J. et al. Randomized phase III trial comparing single-agent paclitaxel poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J. Thorac. Oncol. 2008, 3, 728–734.

    Article  Google Scholar 

  167. Markham, A. Tisotumab vedotin: First approval. Drugs 2021, 31, 2141–2147.

    Article  Google Scholar 

  168. Keam, S. J. Trastuzumab deruxtecan: First approval. Drugs 2020, 80, 501–508.

    Article  CAS  Google Scholar 

  169. Manich, C. S.; O’Shaughnessy, J.; Aftimos, P. G.; van den Tweel, E.; Oesterholt, M.; Escrivá-de-Romaní, S. I.; Tueux, N. Q.; Tan, T. J.; Lim, J. S.; Ladoire, S. et al. LBA15 Primary outcome of the phase III SYD985.002/TULIP trial comparing [vic-] trastuzumab duocarmazine to physician’s choice treatment in patients with pre-treated HER2-positive locally advanced or metastatic breast cancer. Ann. Oncol. 2021, 32, S1288.

    Article  Google Scholar 

  170. Bendell, J.; Saleh, M.; Rose, A. A. N.; Siegel, P. M.; Hart, L.; Sirpal, S.; Jones, S.; Green, J.; Crowley, E.; Simantov, R. et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with locally advanced or metastatic breast cancer. J. Clin. Oncol. 2014, 32, 3619–3625.

    Article  CAS  Google Scholar 

  171. Mullard, A. Cancer stem cell candidate Rova-T discontinued. Nat. Rev. Drug Discov. 2019, 13, 814.

    Google Scholar 

  172. Petrylak, D. P.; Smith, D. C.; Appleman, L. J.; Fleming, M. T.; Hussain, A.; Dreicer, R.; Sartor, A. O.; Shore, N. D.; Vogelzang, N. J.; Youssoufian, H. et al. A phase II trial of prostate-specific membrane antigen antibody drug conjugate (PSMA ADC) in taxane-refractory metastatic castration-resistant prostate cancer (mCRPC). J. Chin. Oncol. 2014, 32, 83.

    Google Scholar 

  173. Waqar, S. N.; Redman, M. W.; Arnold, S. M.; Hirsch, F. R.; Mack, P. C.; Schwartz, L. H.; Gandara, D. R.; Stinchcombe, T. E.; Leighl, N. B.; Ramalingam, S. S. et al. A phase II study of telisotuzumab vedotin in patients with c-MET-positive stage IV or recurrent squamous cell lung cancer (LUNG-MAP Sub-study S1400K, NCT03574753). Clin. Lung Cancer 2021, 22, 170–177.

    Article  CAS  Google Scholar 

  174. Han, H. S.; Alemany, C. A.; Brown-Glaberman, U. A.; Pluard, T. J.; Sinha, R.; Sterrenberg, D.; Albain, K. S.; Basho, R. K.; Biggs, D.; Boni, V. et al. SGNLVA-002: Single-arm, open label phase Ib/II study of ladiratuzumab vedotin (LV) in combination with pembrolizumab for first-line treatment of patients with unresectable locally advanced or metastatic triple-negative breast cancer. J. Clin. Oncol. 2019, 37.

  175. Zambrano, C. C.; Almhanna, K.; Messersmith, W. A.; Ahnert, J. R.; Ryan, D. P.; Faris, J. E.; Jung, J. A.; Fasanmade, A.; Wyant, T.; Kalebic, T. MLN0264, an investigational antiguanylyl cyclase C (GCC) antibody-drug conjugate (ADC), in patients (pts) with advanced gastrointestinal (GI) malignancies: Phase I study. J. Clin. Oncol. 2014, 32, 3546.

    Article  Google Scholar 

  176. Advani, R. H.; Lebovic, D.; Chen, A.; Brunvand, M.; Goy, A.; Chang, J. E.; Hochberg, E.; Yalamanchili, S.; Kahn, R.; Lu, D. et al. Phase I study of the anti-CD22 antibody-drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 2017, 23, 1167–1176.

    Article  CAS  Google Scholar 

  177. Sawas, A.; Savage, K. J.; Perez, R.; Advani, R. H.; Butturini, A.; Lackey, J.; Trave, F.; Anand, B.; Huang, Y.; Reyno, L. et al. A phase 1 study of the anti-CD37 antibody-drug conjugate AGS67E in advanced lymphoid malignancies. Interim results. Blood 2015, 126, 3976.

    Article  Google Scholar 

  178. Petrylak, D.; Heath, E.; Sonpavde, G.; George, S.; Morgans, A. K.; Eigl, B. J.; Picus, J.; Cheng, S.; Hotte, S. J.; Gartner, E. et al. Interim analysis of a phase I dose escalation trial of the antibody drug conjugate (ADC) AGS15E (ASG-15ME) in patients (Pts) with metastatic urothelial cancer (mUC). Ann. Oncol. 2016, 27, vi269.

    Article  Google Scholar 

  179. Owonikoko, T. K.; Hussain, A.; Stadler, W. M.; Smith, D. C.; Kluger, H.; Molina, A. M.; Gulati, P.; Shah, A.; Ahlers, C. M.; Cardarelli, P. M. et al. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother. Pharmacol. 2016, 77, 155–162.

    Article  CAS  Google Scholar 

  180. Danila, D. C.; Szmulewitz, R. Z.; Baron, A. D.; Higano, C. S.; Scher, H. I.; Morris, M. J.; Gilbert, H.; Brunstein, F.; Lemahieu, V.; Kabbarah, O. et al. A phase I study of DSTP3086S, an antibody-drug conjugate (ADC) targeting STEAP-1, in patients (pts) with metastatic castration-resistant prostate cancer (CRPC). J. Clin. Oncol. 2014, 32, 5024.

    Article  Google Scholar 

  181. Liu, J. F.; Moore, K. N.; Birrer, M. J.; Berlin, S.; Matulonis, U. A.; Infante, J. R.; Wolpin, B.; Poon, K. A.; Firestein, R.; Xu, J. et al. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer. Ann. Oncol. 2016, 27, 2124–2130.

    Article  CAS  Google Scholar 

  182. Phillips, T.; Barr, P. M.; Park, S. I.; Kolibaba, K.; Caimi, P. F.; Chhabra, S.; Kingsley, E. C.; Boyd, T.; Chen, R.; Carret, A. S. et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive diffuse large B cell lymphoma and mantle cell lymphoma. Invest. New Drugs 2019, 37, 297–306.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Nos. NRF-2019R1A2C3006283 and NRF-2021R1C1C2005460), the KU-KIST Graduate School of Converging Science and Technology (Korea University & KIST), and the Intramural Research Program of KIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangmeyung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S.I., Yang, S., Shim, M.K. et al. Cathepsin B-responsive prodrugs for cancer-targeted therapy: Recent advances and progress for clinical translation. Nano Res. 15, 7247–7266 (2022). https://doi.org/10.1007/s12274-022-4354-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4354-y

Keywords

Navigation