Skip to main content
Log in

Design of platinum single-atom doped metal nanoclusters as efficient oxygen reduction electrocatalysts by coupling electronic descriptor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inspired by the single-atom catalysts (SACs) concept, we rationally design a series of Pt single atom catalysts embedded in different transition metal nanoclusters through first-principles calculations. In these so-called “crown-jewel” (CJ) structures, Pt atoms (jewels) occupy the vertex sites of the metal nanocluster (crown) surface. We investigated the thermal stability and oxygen reduction reaction (ORR) catalytic activity of these catalysts. The results reveal that CJ-structured PtCu nanoclusters are stable and possess a comparable or even better ORR activity compared to Pt catalyst, making it a promising candidate for low-cost ORR catalysts. The effect of cluster size on the adsorption strength of ORR intermediates and catalytic property has also been studied. Furthermore, the overall ORR catalytic activity trend of these SACs is explained based on analysis of their electronic properties. A descriptor Ψ was established to provide further insight into the correlation between the electronic structure and catalytic activity, which provides a design strategy for new ORR catalysts. More importantly, we reveal that this electronic descriptor can be extended to predict other CJ-structured nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    CAS  Google Scholar 

  2. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Google Scholar 

  3. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    CAS  Google Scholar 

  4. Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

    CAS  Google Scholar 

  5. He, T. W.; Zhang, C. M.; Zhang, L.; Du, A. J. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. Nano Res. 2019, 12, 1817–1823.

    CAS  Google Scholar 

  6. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., 2022, 1, 100013.

    Google Scholar 

  7. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  8. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

    CAS  Google Scholar 

  9. Yang, T.; Song, T. T.; Zhou, J.; Wang, S. J.; Chi, D. Z.; Shen, L.; Yang, M.; Feng, Y. P. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy 2020, 68, 104304.

    CAS  Google Scholar 

  10. Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

    CAS  Google Scholar 

  11. Peng, Q.; Zhou, J.; Chen, J. T.; Zhang, T.; Sun, Z. M. Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell. J. Mater. Chem. A 2019, 7, 26062–26070.

    CAS  Google Scholar 

  12. Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

    CAS  Google Scholar 

  13. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    CAS  Google Scholar 

  14. Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Erratum to: Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 738.

    Google Scholar 

  15. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  16. Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

    CAS  Google Scholar 

  17. Li, H.; Chai, W. R.; Henkelman, G. Selectivity for ethanol partial oxidation: The unique chemistry of single-atom alloy catalysts on Au, Ag, and Cu (111). J. Mater. Chem. A 2019, 7, 23868–23877.

    CAS  Google Scholar 

  18. Mao, J. J.; Yin, J. S.; Pei, J. J.; Wang, D. S.; Li, Y. D. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917.

    CAS  Google Scholar 

  19. Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 2011, 11, 49–52.

    Google Scholar 

  20. Zhang, H. J.; Lu, L. L.; Kawashima, K.; Okumura, M.; Haruta, M.; Toshima, N. Synthesis and catalytic activity of crown jewel-structured (IrPd)/Au trimetallic nanoclusters. Adv. Mater. 2015, 27, 1383–1388.

    CAS  Google Scholar 

  21. Zhang, H. J.; Wang, L. Q.; Lu, L. L.; Toshima, N. Preparation and catalytic activity for aerobic glucose oxidation of crown jewel structured Pt/Au bimetallic nanoclusters. Sci. Rep. 2016, 6, 30752.

    CAS  Google Scholar 

  22. Chen, L. Y.; Huang, W. H.; Wang, X. J.; Chen, Z. J.; Yang, X. F.; Luque, R.; Li, Y. W. Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks. Chem. Commun. 2017, 53, 1184–1187.

    CAS  Google Scholar 

  23. Shi, L. B.; Yang, M.; Cao, S.; You, Q.; Niu, Y. Y.; Wang, Y. Z. Elastic behavior and intrinsic carrier mobility for monolayer SnS and SnSe: First-principles calculations. Appl. Surf. Sci. 2019, 492, 435–448.

    CAS  Google Scholar 

  24. Yang, T.; Bao, Y.; Xiao, W.; Zhou, J.; Ding, J.; Feng, Y. P.; Loh, K. P.; Yang, M.; Wang, S. J. Hydrogen evolution catalyzed by a molybdenum sulfide two-dimensional structure with active basal planes. ACS Appl. Mater. Interfaces 2018, 10, 22042–22049.

    CAS  Google Scholar 

  25. Su, Y.; Cao, S.; Shi, L. B.; Qian, P. Investigation of biaxial strain behavior and phonon-limited mobility for γ graphyne: First-principles calculation. J. App. Phys 2021, 130, 195703.

    CAS  Google Scholar 

  26. Shi, L. B.; Zhang, Y. Y.; Xiu, X. M.; Dong, H. K. Structural characteristics and strain behavior of two-dimensional C3N: First principles calculations. Carbon 2018, 134, 103–111.

    CAS  Google Scholar 

  27. Liu, Q.; Zhao, H. Y.; Wang, X. X.; Huo, J. R.; Li, L.; Gao, P. P.; Qian, P.; Su, Y. J.; Chen, N. X. Theoretical investigation of Agn@(ZnS)42(n = 6–16) using first principles: Structural, electronic and optical properties. Prog. Nat. Sci. Mater. Int. 2019, 29, 525–532.

    CAS  Google Scholar 

  28. Li, H.; Li, L.; Pedersen, A.; Gao, Y.; Khetrapal, N.; Jónsson, H.; Zeng, X. C. Magic-number gold nanoclusters with diameters from 1 to 3.5 nm: Relative stability and catalytic activity for CO oxidation. Nano Lett. 2015, 15, 682–688.

    Google Scholar 

  29. Kaya, D.; Gao, J. Z.; Fard, M. R.; Palmer, R. E.; Guo, Q. M. Controlled manipulation of magic number gold-fullerene clusters using scanning tunneling microscopy. Langmuir 2018, 34, 8388–8392.

    CAS  Google Scholar 

  30. Wang, J. W.; Mbah, C. F.; Przybilla, T.; Zubiri, B. A.; Spiecker, E.; Engel, M.; Vogel, N. Magic number colloidal clusters as minimum free energy structures. Nat. Commun. 2018, 9, 5259.

    CAS  Google Scholar 

  31. Wang, D.; Dasgupta, T.; van der Wee, E. B.; Zanaga, D.; Altantzis, T.; Wu, Y. T.; Coli, G. M.; Murray, C. B.; Bals, S.; Dijkstra, M. et al. Binary icosahedral clusters of hard spheres in spherical confinement. Nat. Phys. 2021, 17, 128–134.

    CAS  Google Scholar 

  32. de Nijs, B.; Dussi, S.; Smallenburg, F.; Meeldijk, J. D.; Groenendijk, D. J.; Filion, L.; Imhof, A.; van Blaaderen, A.; Dijkstra, M. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater. 2015, 14, 56–60.

    CAS  Google Scholar 

  33. Li, L.; Wang, Y. Z.; Wang, X. X.; Song, K. K.; Jian, X. D.; Qian, P.; Bai, Y.; Su, Y. J. Size and stoichiometry effect of FePt bimetal nanoparticle catalyst for CO oxidation: A DFT study. J. Phys. Chem. C 2020, 124, 8706–8715.

    CAS  Google Scholar 

  34. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  37. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Google Scholar 

  38. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    CAS  Google Scholar 

  39. Noh, S. H.; Seo, M. H.; Seo, J. K.; Fischer, P.; Han, B. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts. Nanoscale 2013, 5, 8625–8633.

    CAS  Google Scholar 

  40. Shuichi, N. Constant temperature molecular dynamics methods. Prog. Theor. Phys. Suppl. 1991, 103, 1–46.

    Google Scholar 

  41. Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted—Evans—Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.

    CAS  Google Scholar 

  42. Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

    CAS  Google Scholar 

  43. Escaño, M. C. S. First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape. Nano Res. 2015, 8, 1689–1697.

    Google Scholar 

  44. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    CAS  Google Scholar 

  45. Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Nørskov, J. K. Universality in oxygen reduction electrocatalysis on metal surfaces. ACS Catal. 2012, 2, 1654–1660.

    CAS  Google Scholar 

  46. Shin, J.; Choi, J. H.; Cha, P. R.; Kim, S. K.; Kim, I.; Lee, S. C.; Jeong, D. S. Catalytic activity for oxygen reduction reaction on platinum-based core-shell nanoparticles: All-electron density functional theory. Nanoscale 2015, 7, 15830–15839.

    CAS  Google Scholar 

  47. Nair, A. S.; Pathak, B. Computational screening for ORR activity of 3D transition metal based M@Pt core—shell clusters. J. Phys. Chem. C 2019, 123, 3634–3644.

    CAS  Google Scholar 

  48. Wang, C. Y.; Chen, L. F.; Li, G.; Lu, B. A.; Zhou, Z. Y.; Tian, N.; Sun, S. G. Improved stability of octahedral PtCu by Rh doping for the oxygen reduction reaction. ChemElectroChem 2021, 8, 2425–2430.

    CAS  Google Scholar 

  49. Xiao, Z. J.; Wu, H.; Zhong, H. C.; Abdelhafiz, A.; Zeng, J. H. Dealloyed PtCu/C catalysts with enhanced electrocatalytic performance for the oxygen reduction reaction. Nanoscale 2021, 13, 13896–13904.

    CAS  Google Scholar 

  50. Kim, H. Y.; Kwon, T.; Ha, Y.; Jun, M.; Baik, H.; Jeong, H. Y.; Kim, H.; Lee, K.; Joo, S. H. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 2020, 20, 7413–7421.

    CAS  Google Scholar 

  51. Li, W. Q.; Hu, Z. Y.; Zhang, Z. W.; Wei, P.; Zhang, J. N.; Pu, Z. H.; Zhu, J. W.; He, D. P.; Mu, S. C.; Van Tendeloo, G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J. Catal. 2019, 375, 164–170.

    CAS  Google Scholar 

  52. Liu, Y.; Chen, L. F.; Cheng, T.; Guo, H. Y.; Sun, B.; Wang, Y. Preparation and application in assembling high-performance fuel cell catalysts of colloidal PtCu alloy nanoclusters. J. Power Sources 2018, 395, 66–76.

    CAS  Google Scholar 

  53. Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    CAS  Google Scholar 

  54. Xu, H. X.; Cheng, D. J.; Gao, Y. Design of high-performance Pd-based alloy nanocatalysts for direct synthesis of H2O2. ACS Catal. 2017, 7, 2164–2170.

    CAS  Google Scholar 

  55. Tang, W.; Sanville, E.; Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys.:Condens. Matter 2009, 21, 084204.

    CAS  Google Scholar 

  56. Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A:Chem. 1997, 115, 421–429.

    CAS  Google Scholar 

  57. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFB0704300) and partially by the Ministry of Education, Singapore, under its MOE AcRF Tier 3 Award MOE2018-T3-1-002. Q. L. thanks the China Scholarship Council (CSC) for financial support (No. 202006460065). We acknowledge Centre for Advanced 2D Materials, National University of Singapore, and National Supercomputing Center Singapore for providing highperformance computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Qian or Yuan Ping Feng.

Electronic Supplementary Material

12274_2022_4343_MOESM1_ESM.pdf

Design of platinum single-atom doped metal nanoclusters as efficient oxygen reduction electrocatalysts by coupling electronic descriptor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wang, X., Li, L. et al. Design of platinum single-atom doped metal nanoclusters as efficient oxygen reduction electrocatalysts by coupling electronic descriptor. Nano Res. 15, 7016–7025 (2022). https://doi.org/10.1007/s12274-022-4343-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4343-1

Keywords

Navigation