Skip to main content
Log in

Nonlinear electronic and ultrafast optical signatures in chemical vapor-deposited ultrathin PtS2 ribbons

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The emerging two-dimensional (2D) platinum disulfide (PtS2) has driven increasing attentions due to its high electron mobility, good air-stability, and strong interlayer interaction which leads to a widely tunable electronic structure. However, a detailed study on its covalent-like layer-dependent properties remains infant. Herein, we demonstrate the successful production of ultrathin 1T-PtS2 ribbons with thickness centralized almost at monolayer 1L–4L and large domain size up to 210 µm on Au foils using chemical vapor deposition (CVD) technique, which enables macro- and microscopic study of its extraordinary layer-dependent features with precise control of the number of layers. Using electron energy loss spectroscopy (EELS) and optical pump-probe spectroscopy (OPPS), we reveal that both the electron and ultrafast optical absorption signals of the as-grown 2D PtS2 show strong nonlinear layer-dependent responses which manifest discriminated transition in 1L–4L PtS2 ribbons. The layer-dependent nonlinear response of 2D PtS2 can be well interpreted in the frame of calculated electron and phonon structures. These achievements offer a platform for successfully fabricating large-sized ultrathin 2D PtS2 and facilitating our knowledge about its electronic and optoelectronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J. F.; Kolekar, S.; Ghorbani-Asl, M.; Lehnert, T.; Biskupek, J.; Kaiser, U.; Krasheninnikov, A. V.; Batzill, M. Layer-dependent band gaps of platinum dichalcogenides. ACS Nano 2021, 15, 13249–13259.

    Article  CAS  Google Scholar 

  2. Zhao, Y. D.; Qiao, J. S.; Yu, P.; Hu, Z. X.; Lin, Z. Y.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 2016, 28, 2399–2407.

    Article  CAS  Google Scholar 

  3. Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

    Article  CAS  Google Scholar 

  4. Noh, H. J.; Jeong, J.; Cho, E. J.; Kim, K.; Min, B. I.; Park, B. G. Experimental realization of type-II Dirac fermions in a PdTe2 superconductor. Phys. Rev. Lett. 2017, 119, 016401.

    Article  Google Scholar 

  5. Zhao, Y. D.; Qiao, J. S.; Yu, Z. H.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X. R.; Ji, W. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.

    Article  Google Scholar 

  6. Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

    Article  Google Scholar 

  7. Hu, D. K.; Zhao, T. Q.; Ping, X. F.; Zheng, H. S.; Xing, L.; Liu, X. Z.; Zheng, J. Y.; Sun, L. F.; Gu, L.; Tao, C. G. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 6977–6981.

    Article  CAS  Google Scholar 

  8. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

    Article  Google Scholar 

  9. Huang, Z. S.; Zhang, W. X.; Zhang, W. L. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 2016, 9, 716.

    Article  Google Scholar 

  10. Sajjad, M.; Singh, N.; Schwingenschlogl, U. Strongly bound excitons in monolayer PtS2 and PtSe2. Appl. Phys. Lett. 2018, 112, 043101.

    Article  Google Scholar 

  11. Li, L.; Wang, W. K.; Chai, Y.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 2017, 27, 1701011.

    Article  Google Scholar 

  12. Xu, H. J.; Huang, H. P.; Fei, H. F.; Feng, J. F.; Fuh, H. R.; Cho, J.; Choi, M.; Chen, Y. H.; Zhang, L.; Chen, D. Y. et al. Strategy for fabricating wafer-scale platinum disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8202–8209.

    Article  CAS  Google Scholar 

  13. Wang, Z.; Wang, P.; Wang, F.; Ye, J. F.; He, T.; Wu, F.; Peng, M.; Wu, P. S.; Chen, Y. F.; Zhong, F. et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945.

    Article  CAS  Google Scholar 

  14. Bie, Y. Q.; Grosso, G.; Heuck, M.; Furchi, M. M.; Cao, Y.; Zheng, J. B.; Bunandar, D.; Navarro-Moratalla, E.; Zhou, L.; Efetov, D. K. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 2017, 12, 1124–1129.

    Article  CAS  Google Scholar 

  15. Jin, L. L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H. Q.; Lee, S. T.; Liu, Z.; Peng, R. Functionalized graphene oxide in enzyme engineering: A selective modulator for enzyme activity and thermostability. ACS Nano 2012, 6, 4864–4875.

    Article  CAS  Google Scholar 

  16. Wang, S. X.; Yu, H. H.; Zhang, H. J.; Wang, A. Z.; Zhao, M. W.; Chen, Y. X.; Mei, L. M.; Wang, J. Y. Broadband few-layer MoS2 saturable absorbers. Adv. Mater. 2014, 26, 3538–3544.

    Article  CAS  Google Scholar 

  17. Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.

    Article  Google Scholar 

  18. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Article  Google Scholar 

  19. Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.

    Article  Google Scholar 

  20. Zhang, Y.; Yin, L.; Chu, J. W.; Shifa, T. A.; Xia, J.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X.; He, J. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv. Mater. 2018, 30, 1803665.

    Article  Google Scholar 

  21. Zeng, M. Q.; Liu, J. X.; Zhou, L.; Mendes, R. G.; Dong, Y. Q.; Zhang, M. Y.; Cui, Z. H.; Cai, Z. H.; Zhang, Z.; Zhu, D. M. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 2020, 19, 528–533.

    Article  CAS  Google Scholar 

  22. Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

    Article  CAS  Google Scholar 

  23. Lu, J.; Zhang, X.; Su, G.; Yang, W.; Han, K.; Yu, X.; Wan, Y.; Wang, X.; Yang, P. Large-area uniform few-layer PtS2: Synthesis, structure and physical properties. Mater. Today Phys. 2021, 18, 100376.

    Article  CAS  Google Scholar 

  24. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  CAS  Google Scholar 

  25. Wang, L.; Zhang, S. F.; McEvoy, N.; Sun, Y. Y.; Huang, J. W.; Xie, Y. F.; Dong, N. N.; Zhang, X. Y.; Kislyakov, I. M.; Nunzi, J. M. et al. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev. 2019, 13, 1900052.

    Article  Google Scholar 

  26. Wang, G. Z.; Wang, K. P.; McEvoy, N.; Bai, Z. Y.; Cullen, C. P.; Murphy, C. N.; McManus, J. B.; Magan, J. J.; Smith, C. M.; Duesberg, G. S. et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small 2019, 15, 1902728.

    Article  Google Scholar 

  27. Chen, X.; Zhang, S. F.; Wang, L.; Huang, Y. F.; Liu, H. Y.; Huang, J. W.; Dong, N. N.; Liu, W. M.; Kislyakov, I. M.; Nunzi, J. M. et al. Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2. Photonics Res. 2019, 7, 1416–1424.

    Article  CAS  Google Scholar 

  28. Lu, L.; Wang, W. H.; Wu, L. M.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q.; Fan, D. Y.; Zhang, H. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics 2017, 4, 2852–2861.

    Article  CAS  Google Scholar 

  29. Wu, L. M.; Xie, Z. J.; Lu, L.; Zhao, J. L.; Wang, Y. Z.; Jiang, X. T.; Ge, Y. Q.; Zhang, F.; Lu, S. B.; Guo, Z. N. et al. Few-layer tin sulfide: A promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater. 2018, 6, 1700985.

    Article  Google Scholar 

  30. Wu, L. M.; Dong, Y. Z.; Zhao, J. L.; Ma, D. T.; Huang, W. C.; Zhang, Y.; Wang, Y. Z.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q. et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 2019, 31, 1807981.

    Article  Google Scholar 

  31. Chen, W. Q.; Zhang, F.; Wang, C.; Jia, M. S.; Zhao, X. H.; Liu, Z. R.; Ge, Y. Q.; Zhang, Y. P.; Zhang, H. Nonlinear photonics using low-dimensional metal-halide perovskites: Recent advances and future challenges. Adv. Mater. 2021, 33, 2004446.

    Article  CAS  Google Scholar 

  32. Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

    Article  CAS  Google Scholar 

  33. Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.

    Article  Google Scholar 

  34. Shi, J. P.; Huan, Y. H.; Hong, M.; Xu, R. Z.; Yang, P. F.; Zhang, Z. P.; Zou, X. L.; Zhang, Y. F. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 2019, 13, 8442–8451.

    Article  CAS  Google Scholar 

  35. Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small 2019, 15, 1902789.

    Article  CAS  Google Scholar 

  36. Yang, P. F.; Zhang, S. Q.; Pan, S. Y.; Tang, B.; Liang, Y.; Zhao, X. X.; Zhang, Z. P.; Shi, J. P.; Huan, Y. H.; Shi, Y. P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 2020, 14, 5036–5045.

    Article  CAS  Google Scholar 

  37. Choi, S. H.; Kim, H. J.; Song, B.; Kim, Y. I.; Han, G.; Nguyen, H. T. T.; Ko, H.; Boandoh, S.; Choi, J. H.; Oh, C. S. et al. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth Au surface. Adv. Mater. 2021, 33, 2006601.

    Article  CAS  Google Scholar 

  38. Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

    Article  CAS  Google Scholar 

  39. Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886.

    Article  Google Scholar 

  40. Huang, J. W.; Dong, N. N.; McEvoy, N.; Wang, L.; Coileáin, C. Ó; Wang, H. Q.; Cullen, C. P.; Chen, C. D.; Zhang, S. F.; Zhang, L. et al. Surface-state assisted carrier recombination and optical nonlinearities in bulk to 2D nonlayered PtS. ACS Nano 2019, 13, 13390–13402.

    Article  CAS  Google Scholar 

  41. Jiang, S. L.; Yang, J.; Shi, Y. P.; Zhao, J.; Xie, C. Y.; Zhao, L. Y.; Fu, J. T.; Yang, P. F.; Huan, Y. H.; Xie, Q. et al. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Res. 2020, 13, 667–675.

    Article  CAS  Google Scholar 

  42. Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. Thickness dependent electronic properties of Pt dichalcogenides. npj 2D Mater. Appl. 2019, 3, 2.

    Article  Google Scholar 

  43. Bistritzer, R.; MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 2009, 102, 206410.

    Article  CAS  Google Scholar 

  44. Thomsen, C.; Strait, J.; Vardeny, Z.; Maris, H. J.; Tauc, J.; Hauser, J. J. Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 1984, 53, 989–992.

    Article  CAS  Google Scholar 

  45. Krauss, T. D.; Wise, F. W. Coherent acoustic phonons in a semiconductor quantum dot. Phys. Rev. Lett. 1997, 79, 5102–5105.

    Article  CAS  Google Scholar 

  46. Jeong, T. Y.; Jin, B. M.; Rhim, S. H.; Debbichi, L.; Park, J.; Jang, Y. D.; Lee, H. R.; Chae, D. H.; Lee, D.; Kim, Y. H. et al. Coherent lattice vibrations in mono- and few-layer WSe2. ACS Nano 2016, 10, 5560–5566.

    Article  CAS  Google Scholar 

  47. Miao, X. C.; Zhang, G. W.; Wang, F. J.; Yan, H. G.; Ji, M. B. Layer-dependent ultrafast carrier and coherent phonon dynamics in black phosphorus. Nano Lett. 2018, 18, 3053–3059.

    Article  CAS  Google Scholar 

  48. Zeiger, H. J.; Vidal, J.; Cheng, T. K.; Ippen, E. P.; Dresselhaus, G.; Dresselhaus, M. S. Theory for displacive excitation of coherent phonons. Phys. Rev. B 1992, 45, 768–778.

    Article  CAS  Google Scholar 

  49. Riffe, D. M.; Sabbah, A. J. Coherent excitation of the optic phonon in Si: Transiently stimulated Raman scattering with a finite-lifetime electronic excitation. Phys. Rev. B 2007, 76, 085207.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51991344, 51991340, 11774354, 51727806, 61988102, 11974156, 12174398, and 12104206), Guangdong International Science Collaboration Project (No. 2019A050510001), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2019ZT08C044), Shenzhen Science and Technology Program (Nos. KQTD20190929173815000 and 20200925161102001), and the Science, Technology and Innovation Commission of Shenzhen Municipality (No. ZDSYS20190902092905285). TEM/STEM characterization was performed at the Pico Center from SUSTech Core Research Facilities that receives support from the Presidential Fund and Development and Reform Commission of Shenzhen Municipality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaolong Jiang, Fuhai Su, Yanfeng Zhang or Junhao Lin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Yang, J., Zhu, L. et al. Nonlinear electronic and ultrafast optical signatures in chemical vapor-deposited ultrathin PtS2 ribbons. Nano Res. 15, 4366–4373 (2022). https://doi.org/10.1007/s12274-022-4168-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4168-y

Keywords

Navigation