Skip to main content
Log in

Downy feather-like para-aramid fibers and nonwovens with enhanced absorbency, air filtration and thermal insulation performances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fiber morphology with off-standing branches, as found in nature, e.g., in goose downy feather, provides exquisite functions that can be barely achieved by man-made fiber systems. In this work, we develop a simple and scalable method for generating downy feather-like para-aramid fibers and assemblies. Through treating commercial para-aramid microfibers with mild alkaline solution (low concentration of NaOH), a synergistic effect of chemical hydrolysis and physical shearing is successfully triggered to generate abundant nanofiber branches on the surface of para-aramid fibers. When compared with conventional monotonous structures, nonwovens composed of downy feather-like fibers exhibit a typical multiscale fiber morphology, larger specific surface area and smaller pore size, thus showing enhanced particles adsorption capacity (over twice of the pristine nonwoven), excellent oil absorption capacity (increased by ∼ 50%), improved air filtration performances (doubled the filtration efficiency) and effective thermal insulation (thermal conductivity = 26.1 mW·m−1·K−1). More attractively, the intrinsic flame-retardant nature of para-aramid is well inherited by the downy feather-like fibers, and the fabrication process requires neither sophisticated equipment, nor tedious procedures, making us believe the strong competitiveness of these fibers and assemblies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Y. C; Shah, D. U.; Wang, B. Y.; Liu, J.; Ren, X. H.; Ramage, M. H.; Scherman, O. A. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 2018, 30, 1707169.

    Article  CAS  Google Scholar 

  2. Shi, G.; Zhang, X.; Li, J. H.; Zhu, H. Y.; Li, Y.; Zhang, L. P.; Ni, C. H.; Chi, L. F. Fabrication of 3D biomimetic composite coating with broadband antireflection, superhydrophilicity, and double p–n heterojunctions. Nano Res. 2017, 10, 2377–2385.

    Article  CAS  Google Scholar 

  3. Teng, Y. F.; Kong, X. Y.; Liu, P.; Qian, Y. C.; Hu, Y. H.; Fu, L.; Xin, W. W.; Jiang, L.; Wen, L. P. A universal functionalization strategy for biomimetic nanochannel via external electric field assisted non-covalent interaction. Nano Res. 2020, 14, 1421–1428.

    Article  CAS  Google Scholar 

  4. Buehler, E. L.; Su, I.; Buehler, M. J. WebNet: A biomateriomic three-dimensional spider web neural net. Extreme Mech. Lett. 2021, 42, 101034.

    Article  Google Scholar 

  5. Liao, J. F.; Shi, K.; Jia, Y. P.; Wu, Y. T.; Qian, Z. Y. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioact. Mater. 2021, 6, 2221–2230.

    Article  CAS  Google Scholar 

  6. Luan, K.; He, M. L.; Xu, B. J.; Wang, P. W.; Zhou, J. J.; Hu, B. B.; Jiang, L.; Liu, H. Spontaneous directional self-cleaning on the feathers of the aquatic bird Anser cygnoides domesticus induced by a transient superhydrophilicity. Adv. Funct. Mater. 2021, 31, 2010634.

    Article  CAS  Google Scholar 

  7. Ma, C. Y.; Wang, H. T.; Chi, Y. J.; Wang, Y. L.; Jiang, L.; Xu, N.; Wu, Q.; Feng, Q. L.; Sun, X. D. Preparation of oriented collagen fiber scaffolds and its application in bone tissue engineering. Appl. Mater. Today 2021, 22, 100902.

    Article  Google Scholar 

  8. Lee, J.; Yang, H. S.; Lee, N. S.; Kwon, O.; Shin, H. Y.; Yoon, S.; Baik, J. M.; Seo, Y. S.; Kim, M. H. Hierarchically assembled 1-dimensional hetero-nanostructures: Single crystalline RuO2 nanowires on electrospun IrO2 nanofibres. CrystEngComm 2013, 15, 2367–2371.

    Article  CAS  Google Scholar 

  9. Burgard, M.; Weiss, D.; Kreger, K.; Schmalz, H.; Agarwal, S.; Schmidt, H. W.; Greiner, A. Mesostructured nonwovens with penguin downy feather-like morphology-top-down combined with bottom-up. Adv. Funct. Mater. 2019, 29, 1903166.

    Article  CAS  Google Scholar 

  10. Luo, L. B.; Wu, P.; Cheng, Z.; Hong D. W.; Li, B. Y.; Wang, X.; Liu, X. Y. Direct fluorination of Para-aramid fibers 1: Fluorination reaction process of PPTA fiber. J. Fluorine Chem. 2016, 186, 12–18.

    Article  CAS  Google Scholar 

  11. Lim, J.; Zheng, J. Q.; Masters, K.; Chen, W. W. Effects of gage length, loading rates, and damage on the strength of PPTA fibers. Inter. J. Impact Eng. 2011, 38, 219–227.

    Article  Google Scholar 

  12. Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Ding, X. Y. Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 2019, 13, 7886–7897.

    Article  CAS  Google Scholar 

  13. Lu, Z. Q.; Si, L. M.; Dang, W. B.; Zhao, Y. S. Transparent and mechanically robust poly (para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos. Part A -Appl. Sci. Manufactur. 2018, 115, 321–330.

    Article  CAS  Google Scholar 

  14. Cao, K. Q.; Siepermann, C. P.; Yang, M.; Waas, A. M.; Kotov, N. A.; Thouless, M. D.; Arruda, E. M. Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 2013, 23, 2072–2080.

    Article  CAS  Google Scholar 

  15. Sockalingam, S.; Bremble, R.; Gillespie, J. W.; Keefe, M. Transverse compression behavior of Kevlar KM2 single fiber. Compos. Part A -Appl. Sci. Manufactur. 2016, 81, 271–281.

    Article  CAS  Google Scholar 

  16. Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

    Article  CAS  Google Scholar 

  17. Yang, B.; Zhang, M. Y.; Lu, Z. Q.; Luo, J. J.; Song, S. X.; Zhang, Q. Y. From poly (p-phenylene terephthalamide) broken paper: High-performance aramid nanofibers and their application in electrical insulating nanomaterials with enhanced properties. ACS Sustainable Chem. Eng. 2018, 6, 8954–8963.

    Article  CAS  Google Scholar 

  18. Wu, K.; Wang, X. Y.; Xu, Y. H.; Guo, W. H. Flame retardant efficiency of modified Para-aramid fiber synergizing with ammonium polyphosphate on PP/EPDM. Polym. Degred. Stabil. 2020, 172, 109065.

    Article  CAS  Google Scholar 

  19. Chen, X. L.; Wang, W. D.; Jiao; C. M. A recycled environmental friendly flame retardant by modifying Para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer. J. Hazard. Mater. 2017, 331, 257–264.

    Article  CAS  Google Scholar 

  20. Ifuku, S.; Maeta, H.; Izawa, H.; Morimoto, M.; Saimoto, H. Facile preparation of aramid nanofibers from Twaron fibers by a downsizing process. RSC Adv. 2014, 4, 40377–40380.

    Article  CAS  Google Scholar 

  21. Cheng, K.; Li, M. Z.; Zhang, S. H.; He, M.; Yu, J.; Feng, Y.; Lu, S. J. Study on the structure and properties of functionalized fibers with dopamine. Colloid Surf. A Physicochem. Eng. Aspects 2019, 582, 123846.

    Article  CAS  Google Scholar 

  22. Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

    Article  CAS  Google Scholar 

  23. Chen, X.; Li, M. M.; Zhao X.; Dong, J.; Teng, C. Q. Preparation and microstructure control of aerogel fibers based on aramid nanofibers. J. Text. Res. 2021, 42, 17–23.

    Google Scholar 

  24. Dong, L. Y.; Zhu, Y. J.; Zhang, Q. Q.; Shao, Y. T. Fire-retardant and high — temperature — resistant label paper and its potential applications. Chemnanomat 2019, 5, 1418–1427.

    Article  CAS  Google Scholar 

  25. Shah, S. A.; Kulhanek, D.; Sun, W. M.; Zhao, X. F.; Yu, S.; Parviz, D.; Lutkenhaus, J. L.; Green, M. J. Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. J Colloid Interf. Sci. 2020, 560, 581–588.

    Article  CAS  Google Scholar 

  26. Yang, B.; Zhang. M. Y.; Lu, Z. Q.; Luo, J. J.; Song, S. X.; Tan, J. J.; Zhang, Q. Y. Toward improved performances of para-aramid (PPTA) paper-based nanomaterials via aramid nanofibers (ANFs) and ANFs-film. Compos. Part B:Eng. 2018, 154, 166–174.

    Article  CAS  Google Scholar 

  27. Shen, P. X.; Liao, J. B; Chen, Q.; Ruan, H. M.; Shen, J. N. Organic solvent resistant Kevlar nanofiber-based cation exchange membranes for electrodialysis applications. J. Memb. Sci. 2021, 630, 119300.

    Article  CAS  Google Scholar 

  28. Xu, K. L.; Deng, J. X.; Lin, R.; Zhang, H.; Ke, Q. F.; Huang, C. Surface fibrillation of para-aramid nonwoven as a multi-functional air filter with ultralow pressure drop. J. Mater. Chem. A 2020, 8, 22269–22279.

    Article  CAS  Google Scholar 

  29. Chen, X.; Xu, Y.; Zhang, W. X.; Xu, K. L.; Ke, Q. F.; Jin, X. Y.; Huang, C. Online fabrication of ultralight, three-dimensional, and structurally stable ultrafine fibre assemblies with a double-porous feature. Nanoscale 2019, 11, 8185–8195.

    Article  CAS  Google Scholar 

  30. Zhang, H. N.; Zhu, L. L.; Xue, S. W.; Zhao, J.; Ren, H.; Zhai, H. M. Preparation of high oil absorption microfiber cryogels by mechanical method. Wood Sci. Technol. 2020, 54, 1363–1384.

    Article  CAS  Google Scholar 

  31. Wu, Y.; Huang, J.; Chen, J. J.; Li, D.; Shi, X. W.; Du, Y. M.; Deng, H. B. Ordered hollow nanofiber aerogel with revivability for efficient oil absorption. J. Clean. Prod. 2021, 290, 125789.

    Article  CAS  Google Scholar 

  32. Lin, G. Y.; Wang, H.; Yu, B. Q.; Qu, G. K.; Chen, S. W.; Kuang, T. R.; Yu, K. B.; Zhen, Liang, Z. N. Combined treatments of fiber surface etching/silane-coupling for enhanced mechanical strength of aramid fiber-reinforced rubber blends. Mater. Chem. Phys. 2020, 255, 123486.

    Article  CAS  Google Scholar 

  33. E, S. F.; Ma, Q.; Ning, D. D.; Huang, J. Z.; Jin, Z. F.; Lu, Z. Q. Bioinspired covalent crosslink of aramid nanofibers film for improved mechanical performances. Compos. Sci. Technol. 2021, 201, 108514.

    Article  CAS  Google Scholar 

  34. Dong, L.; Shi, M.; Xu, S. J.; Sun, Q. L.; Pan, G. W.; Yao, L. R.; Zhu, C. H. Surface construction of fluorinated TiO2 nanotube networks to develop uvioresistant superhydrophobic aramid fabric. RSC Adv. 2020, 10, 22578–22585.

    Article  CAS  Google Scholar 

  35. Gu, R. X.; Yu, J. R.; Hu, C. C.; Chen, L.; Zhu, J.; Hu, Z. M. Surface treatment of Para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure. Appl. Surf. Sci. 2012, 258, 10168–10174.

    Article  CAS  Google Scholar 

  36. Zhang, X. K.; Li, N.; Hu, Z. M.; Yu, J. R.; Wang, Y.; Zhu, J. Poly(p-phenylene terephthalamide) modified PE separators for lithium ion batteries. J. Membrane Sci. 2019, 581, 355–361.

    Article  CAS  Google Scholar 

  37. Fu, R.; Dong, C. C.; Zhang, Y.; Sun, C. M.; Qu, R. J.; Ji, C. N.; Zhang, Y. PPTA-oligomer functionalized multiwalled carbon nanotubes synthesized by “one-pot” method for reinforcement of polyvinyl chloride. J. Membrane Sci. 2019, 54, 11804–11817.

    CAS  Google Scholar 

  38. Davies, R. J.; Burghammer, M. Thermal- and stress-induced lattice distortions in a single Kevlar 49 fibre studied by microfocus X-ray diffraction. J. Membrane Sci. 2009, 44, 4806–4813.

    CAS  Google Scholar 

  39. Gonzalez, G. M.; Ward, J.; Song, J.; Swana, K.; Fossey, S. A.; Palmer, J. L.; Zhang, F. W.; Lucian, V. M.; Cera, L.; Zimmerman, J. F. et al. Para-aramid fiber sheets for simultaneous mechanical and thermal protection in extreme environments. Matter 2020, 3, 742–758.

    Article  Google Scholar 

  40. Kosuge, K.; Takayasu, A.; Hori, T. Recyclable flame retardant nonwoven for sound absorption; RUBA®. J. Mater. Sci. 2005, 40, 5399–5405.

    Article  CAS  Google Scholar 

  41. Hwang, H. S.; Malakooti, M. H.; Sodano, H. A. Tailored interyarn friction in aramid fabrics through morphology control of surface grown ZnO nanowires. Compos. Part A Appl. Sci. Manufactur. 2015, 76, 326–333.

    Article  CAS  Google Scholar 

  42. Zhang, Z. L.; Zhao, Y.; Li, H. Q.; Percec, S.; Yin, J.; Ren, F. Nanoparticle-infused UHMWPE layer as multifunctional coating for high-performance PPTA single fibers. Sci. Rep. 2019, 9, 7183.

    Article  CAS  Google Scholar 

  43. Cheon, J.; Lim, S. J.; Kim, M. A composite RAS with an enhanced uniformity of absorbing performance using a MWCNT-anchored aramid fiber. Compos. Sci. Technol. 2020, 200, 108442.

    Article  CAS  Google Scholar 

  44. Zhang, H. R.; Zou, X. G.; Liang, J. J.; Ma, X.; Tang, Z. Y.; Sun, J. L. Development of electroless silver plating on Para-aramid fibers and growth morphology of silver deposits. J. Appl. Polym. Sci. 2012, 124, 3363–3371.

    Article  CAS  Google Scholar 

  45. Xu, K. L.; Zhan, L.; Yan, R.; Ke, Q. F.; Yin, A. L.; Huang, C. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven. Nanoscale 2022, 14, 419–427.

    Article  CAS  Google Scholar 

  46. Xiao, W. L.; Niu, B. H.; Yu, M.; Sun, C. D.; Wang, L. H.; Zhou, L.; Zheng, Y. A. Fabrication of foam-like oil sorbent from polylactic acid and Calotropis gigantea fiber for effective oil absorption. J Clean. Prod. 2021, 278, 123507.

    Article  CAS  Google Scholar 

  47. Yang, K.; Ren, J. Q.; Cui, Y. H.; Shah, T.; Zhang, Q. Y.; Zhang, B. L. Length controllable tubular carbon nanofibers: Surface adjustment and oil adsorption performances. Colloid Surf. A Physicochem. Eng. Aspects 2021, 615, 126272.

    Article  CAS  Google Scholar 

  48. Panahi, S.; Moghaddam, M. K.; Moezzi, M. Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. J Environ. Manage. 2020, 268, 110688.

    Article  CAS  Google Scholar 

  49. Zhou, X. Y.; Wang, F. F.; Ji, Y. L.; Chen, W. T.; Wei, J. F. Fabrication of hydrophilic and hydrophobic sites on polypropylene nonwoven for oil spill cleanup: Two dilemmas affecting oil sorption. Environ. Sci. Technol. 2016, 50, 3860–3865.

    Article  CAS  Google Scholar 

  50. Dong, T.; Li, Q.; Nie, K.; Jiang, W.; Li, S. Z.; Hu, X. Y.; Han, G. T. Facile fabrication of marine algae-based robust superhydrophobic sponges for efficient oil removal from water. ACS Omega 2020, 5, 21745–21752.

    Article  CAS  Google Scholar 

  51. Dalapati, R.; Nandi, S.; Gogoi, C.; Shome, A.; Biswas, S. Metal-organic framework (MOF) derived recyclable, superhydrophobic composite of cotton fabrics for the facile removal of oil spills. ACS Appl. Mater. Interfaces 2021, 13, 8563–8573.

    Article  CAS  Google Scholar 

  52. Yeh, S. K.; Tsai, Y. B.; Gebremedhin, K. F.; Chien, T. Y.; Chang, R. Y.; Tung, K. L. Preparation of polypropylene/high-melt-strength PP open-cell foam for oil absorption. Polym. Eng. Sci. 2021, 61, 1139–1149.

    Article  CAS  Google Scholar 

  53. Jadhav, A. C.; Jadhav, N. C. Graft copolymerization of methyl methacrylate on Meizotropis Pellita fibres and their applications in oil absorbency. Iran. Polym. J. 2021, 30, 9–24.

    Article  CAS  Google Scholar 

  54. Souzandeh, H.; Johnson, K. S.; Wang, Y.; Bhamidipaty, K.; Zhong, W. H. Soy-protein-based nanofabrics for highly efficient and multifunctional air Filtration. ACS Appl. Mater. Interfaces 2016, 8, 20023–20031.

    Article  CAS  Google Scholar 

  55. Liu, Z. W.; Lyu, J.; Fang, D.; Zhang, X. T. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 2019, 13, 5703–5711.

    Article  CAS  Google Scholar 

  56. Xie, C. J.; Liu, S. Y.; Zhang, Q. G.; Ma, H. X.; Yang, S. X.; Guo, Z. X.; Qiu, T.; Tuo, X. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 2021, 15, 10000–10009.

    Article  CAS  Google Scholar 

  57. Apostolopoulou-Kalkavoura, V.; Munier, P.; Bergström, L. Thermally insulating nanocellulose-based materials. Adv Mater. 2020, 33, 2001839.

    Article  CAS  Google Scholar 

  58. Xu, D. F. Modification of aramid fiber with phosphorus acid and its effect on flammability and smoke suppression for rigid polyurethane foams. J. Text. Res. 2020, 41, 30–37.

    Google Scholar 

  59. Wu, H. Y.; Li, Y. Y.; Zhao, L.; Wang, S.; Tian, Y. C.; Si, Y.; Yu, J. Y.; Ding, B. Stretchable and superelastic fibrous sponges tailored by “Stiff-Soft” bicomponent electrospun fibers for warmth retention. ACS Appl. Mater. Interfaces 2020, 12, 27562–27571.

    Article  CAS  Google Scholar 

  60. Zhao, S. Y.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nyström, G. Biopolymer aerogels and foams: Chemistry, properties, and applications. Angew Chem., Int. Ed. 2018, 57, 7580–7608.

    Article  CAS  Google Scholar 

  61. Jiang, S.; Zhang, M. L.; Jiang, W.; Xu, Q. Y.; Yu, J. Y.; Liu, L. Y.; Liu, L. F. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties. Carbohydr. Polym. 2020, 247, 116701.

    Article  CAS  Google Scholar 

  62. Shao, Z. Y.; Wang, Y. J.; Bai, H. A superhydrophobic textile inspired by polar bear hair for both in air and underwater thermal insulation. Chem. Eng. J. 2020, 397, 125441.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2020021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinfei Ke or Chen Huang.

Electronic Supplementary Material

Supplementary material, approximately 7.71 MB.

Supplementary material, approximately 21.2 MB.

Supplementary material, approximately 20.0 MB.

12274_2022_4155_MOESM4_ESM.pdf

Downy feather-like para-aramid fibers and nonwovens with enhanced absorbency, air filtration and thermal insulation performances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Deng, J., Tian, G. et al. Downy feather-like para-aramid fibers and nonwovens with enhanced absorbency, air filtration and thermal insulation performances. Nano Res. 15, 5695–5704 (2022). https://doi.org/10.1007/s12274-022-4155-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4155-3

Keywords

Navigation