Skip to main content
Log in

All-hydrocarbon, all-conjugated cycloparaphenylene-polycyclic aromatic hydrocarbon host-guest complexes stabilized by CH−π interactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are promising nanocarbon materials with diverse optoelectronic properties, yet they also pose concerning environmental and health risks. Despite the ubiquity of PAHs in the environment (crude oil, emissions, and biomass), most supermolecules rely on heteroatoms for stability. We discovered and characterized a family of all-hydrocarbon, all-π-conjugated [n]cycloparaphenylene-PAH host-guest complexes. We built a theoretical framework to rapidly select these complexes and predict their stabilities, driven exclusively by CH−π interactions. More than a dozen complexes were confirmed experimentally and assembled directly from commercially available compounds. This motif offers a versatile way to combine the advantageous properties of organic semiconductors with the rich dynamic, stereochemical, stimulus-responsive, and stress-dissipative behavior of host-guest complexes, while creating new opportunities for bespoke PAH separation or remediation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J. S.; Pisula, W.; Müllen, K. Graphenes as potential material for electronics. Chem. Rev.2007, 107, 718–747.

    Article  CAS  Google Scholar 

  2. Sun, Z.; Wu, J. S. Open-shell polycyclic aromatic hydrocarbons. J. Mater. Chem.2012, 22, 4151–4160.

    Article  CAS  Google Scholar 

  3. Kumar, R.; Aggarwal, H.; Srivastava, A. Of twists and curves: Electronics, photophysics, and upcoming applications of non-planar conjugated organic molecules. Chem.—Eur. J.2020, 26, 10653–10675.

    Article  CAS  Google Scholar 

  4. Delgado-Saborit, J. M.; Stark, C.; Harrison, R. M. Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environ. Int.2011, 37, 383–392.

    Article  CAS  Google Scholar 

  5. Collins, J. F.; Brown, J. P.; Alexeeff, G. V.; Salmon, A. G. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharmacol.1998, 28, 45–54.

    Article  CAS  Google Scholar 

  6. Rieger, R.; Müllen, K. Forever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studies. J. Phys. Org. Chem.2010, 23, 315–325.

    CAS  Google Scholar 

  7. Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett.2015, 15, 6030–6035.

    Article  CAS  Google Scholar 

  8. Cho, H. J.; Kim, S. W.; Kim, S.; Lee, S.; Lee, J.; Cho, Y.; Lee, Y.; Lee, T. W.; Shin, H. J.; Song, C. Suppressing π−π stacking interactions for enhanced solid-state emission of flat aromatic molecules via edge Functionalization with picket-fence-type groups. J. Mater. Chem. C2020, 8, 17289–17296.

    Article  CAS  Google Scholar 

  9. Pisula, W.; Feng, X. L.; Müllen, K. Charge-carrier transporting graphene-type molecules. Chem. Mater.2011, 23, 554–567.

    Article  CAS  Google Scholar 

  10. Lauchner, A.; Schlather, A. E.; Manjavacas, A.; Cui, Y.; McClain, M. J.; Stec, G. J.; De Abajo, F. J. G.; Nordlander, P.; Halas, N. J. Molecular plasmonics. Nano Lett.2015, 15, 6208–6214.

    Article  CAS  Google Scholar 

  11. Rapenne, G.; Joachim, C. Single rotating molecule-machines: Nanovehicles and molecular motors. In Molecular Machines and Motors. Topics in Current Chemistry; Credi, A.; Silvi, S.; Venturi, M., Eds.; Springer, 2014; pp 253–277.

  12. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; John Wiley & Sons: Chichester, 2009.

    Book  Google Scholar 

  13. Kawase, T.; Tanaka, K.; Fujiwara, N.; Darabi, H. R.; Oda, M. Complexation of a carbon Nanoring with fullerenes. Angew. Chem., Int. Ed.2003, 42, 1624–1628.

    Article  CAS  Google Scholar 

  14. Kawase, T.; Tanaka, K.; Shiono, N.; Seirai, Y.; Oda, M. Onion-type complexation based on carbon Nanorings and a buckminsterfullerene. Angew. Chem., Int. Ed.2004, 43, 1722–1724.

    Article  CAS  Google Scholar 

  15. Kawase, T.; Nishiyama, Y.; Nakamura, T.; Ebi, T.; Matsumoto, K.; Kurata, H.; Oda, M. Cyclic [5]paraphenyleneacetylene: Synthesis, properties, and formation of a ring-in-ring complex showing a considerably large association constant and entropy effect. Angew. Chem., Int. Ed.2007, 46, 1086–1088.

    Article  CAS  Google Scholar 

  16. Lee, S.; Chénard, E.; Gray, D. L.; Moore, J. S. Synthesis of cycloparaphenyleneacetylene via alkyne metathesis: C70 complexation and copper-free triple click reaction. J. Am. Chem. Soc.2016, 138, 13814–13817.

    Article  CAS  Google Scholar 

  17. Iwamoto, T.; Watanabe, Y.; Sadahiro, T.; Haino, T.; Yamago, S. Size-selective encapsulation of C60 by [10]cycloparaphenylene: Formation of the shortest fullerene-peapod. Angew. Chem., Int. Ed.2011, 50, 8342–8344.

    Article  CAS  Google Scholar 

  18. Iwamoto, T.; Watanabe, Y.; Takaya, H.; Haino, T.; Yasuda, N.; Yamago, S. Size- and orientation-selective encapsulation of C70 by cycloparaphenylenes. Chem.—Eur. J.2013, 19, 14061–14068.

    Article  CAS  Google Scholar 

  19. Iwamoto, T.; Slanina, Z.; Mizorogi, N.; Guo, J. D.; Akasaka, T.; Nagase, S.; Takaya, H.; Yasuda, N.; Kato, T.; Yamago, S. Partial charge transfer in the shortest possible metallofullerene peapod, La@C82⊂[11]cycloparaphenylene. Chem.—Eur. J.2014, 20, 14403–14409.

    Article  CAS  Google Scholar 

  20. Xia, J. L.; Bacon, J. W.; Jasti, R. Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP. Chem. Sci.2012, 3, 3018–3021.

    Article  CAS  Google Scholar 

  21. Isobe, H.; Hitosugi, S.; Yamasaki, T.; Iizuka, R. Molecular bearings of finite carbon nanotubes and fullerenes in ensemble rolling motion. Chem. Sci.2013, 4, 1293–1297.

    Article  CAS  Google Scholar 

  22. Sato, S.; Yamasaki, T.; Isobe, H. Solid-state structures of peapod bearings composed of finite single-wall carbon nanotube and fullerene molecules. Proc. Natl. Acad. Sci. USA2014, 111, 8374–8379.

    Article  CAS  Google Scholar 

  23. Matsuno, T.; Sato, S.; Iizuka, R.; Isobe, H. Molecular recognition in curved π-systems: Effects of π-lengthening of tubular molecules on thermodynamics and structures. Chem. Sci.2015, 6, 909–916.

    Article  CAS  Google Scholar 

  24. Yuan, K.; Guo, Y. J.; Zhao, X. Nature of noncovalent interactions in the [n]cycloparaphenylene⊃C70 (n = 10, 11, and 12) host-guest complexes: A theoretical insight into the shortest C70-carbon nanotube peapod. J. Phys. Chem. C2015, 119, 5168–5179.

    Article  CAS  Google Scholar 

  25. González-Veloso, I.; Cabaleiro-Lago, E. M.; Rodríguez-Otero, J. Fullerene size controls the selective complexation of [11]CPP with pristine and endohedral fullerenes. Phys. Chem. Chem. Phys.2018, 20, 11347–11358.

    Article  Google Scholar 

  26. Hashimoto, S.; Iwamoto, T.; Kurachi, D.; Kayahara, E.; Yamago, S. Shortest double-walled carbon nanotubes composed of cycloparaphenylenes. ChemPlusChem2017, 82, 1015–1020.

    Article  CAS  Google Scholar 

  27. Rio, J.; Beeck, S.; Rotas, G.; Ahles, S.; Jacquemin, D.; Tagmatarchis, N.; Ewels, C.; Wegner, H. A. Electronic communication between two [10]cycloparaphenylenes and Bis(Azafullerene) (C59N)2 induced by cooperative complexation. Angew. Chem., Int. Ed.2018, 57, 6930–6934.

    Article  CAS  Google Scholar 

  28. Yang, Y.; Juríček, M. Fullerene wires assembled inside carbon nanohoops. ChemPlusChem2022, 87, e202100468.

    Article  CAS  Google Scholar 

  29. Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: Carbon nanohoop structures. J. Am. Chem. Soc.2008, 130, 17646–17647.

    Article  CAS  Google Scholar 

  30. Golder, M. R.; Jasti, R. Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena. Acc. Chem. Res.2015, 48, 557–566.

    Article  CAS  Google Scholar 

  31. Xu, Y. Z.; Von Delius, M. The supramolecular chemistry of strained carbon nanohoops. Angew. Chem., Int. Ed.2020, 59, 559–573.

    Article  CAS  Google Scholar 

  32. Lu, D. P.; Huang, Q.; Wang, S. D.; Wang, J. Y.; Huang, P. S.; Du, P. W. The supramolecular chemistry of cycloparaphenylenes and their analogs. Front. Chem.2019, 7, 668.

    Article  CAS  Google Scholar 

  33. Bachrach, S. M. Planar rings in nano-Saturns and related complexes. Chem. Commun.2019, 55, 3650–3653.

    Article  CAS  Google Scholar 

  34. Bachrach, S. M.; Zayat, Z. C. “Planetary orbit” systems composed of cycloparaphenylenes. J. Org. Chem.2016, 81, 4559–4565.

    Article  CAS  Google Scholar 

  35. Sala, P. D.; Talotta, C.; Caruso, T.; De Rosa, M.; Soriente, A.; Neri, P.; Gaeta, C. Tuning cycloparaphenylene host properties by chemical modification. J. Org. Chem.2017, 82, 9885–9889.

    Article  CAS  Google Scholar 

  36. Matsuno, T.; Fujita, M.; Fukunaga, K.; Sato, S.; Isobe, H. Concyclic CH−π arrays for single-axis rotations of a bowl in a tube. Nat. Commun.2018, 9, 3779.

    Article  CAS  Google Scholar 

  37. Adachi, S.; Shibasaki, M.; Kumagai, N. TriQuinoline. Nat. Commun.2019, 10, 3820.

    Article  CAS  Google Scholar 

  38. Vidal-Vidal, Á.; Cabaleiro-Lago, E. M.; López, C. S.; Faza, O. N. Rational design of efficient environmental sensors: Ring-shaped nanostructures can capture Quat herbicides. ACS Omega2018, 3, 16976–16988.

    Article  CAS  Google Scholar 

  39. Yamamoto, Y.; Tsurumaki, E.; Wakamatsu, K.; Toyota, S. Nano-Saturn: Experimental evidence of complex formation of an anthracene cyclic ring with C60. Angew. Chem., Int. Ed.2018, 57, 8199–8202.

    Article  CAS  Google Scholar 

  40. Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm2004, 6, 130–158.

    Article  CAS  Google Scholar 

  41. Nishio, M.; Umezawa, Y.; Fantini, J.; Weiss, M. S.; Chakrabarti, P. CH−π hydrogen bonds in biological macromolecules. Phys. Chem. Chem. Phys.2014, 16, 12648–12683.

    Article  CAS  Google Scholar 

  42. Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science2001, 293, 1119–1122.

    Article  CAS  Google Scholar 

  43. Xiao, S. X.; Myers, M.; Miao, Q.; Sanaur, S.; Pang, K. L.; Steigerwald, M. L.; Nuckolls, C. Molecular wires from contorted aromatic compounds. Angew. Chem., Int. Ed.2005, 44, 7390–7394.

    Article  CAS  Google Scholar 

  44. Feng, X. L; Marcon, V.; Pisula, W.; Hansen, M. R.; Kirkpatrick, J.; Grozema, F.; Andrienko, D.; Kremer, K.; Müllen, K. Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater.2009, 8, 421–426.

    Article  CAS  Google Scholar 

  45. Sagade, A. A.; Rao, K. V.; Mogera, U.; George, S. J.; Datta, A.; Kulkarni, G. U. High-mobility field effect transistors based on supramolecular charge transfer nanofibres. Adv. Mater.2013, 25, 559–564.

    Article  CAS  Google Scholar 

  46. Ulatowski, F.; Dąbrowa, K.; Bałakier, T.; Jurczak, J. Recognizing the limited applicability of job plots in studying host-guest interactions in supramolecular chemistry. J. Org. Chem.2016, 81, 1746–1756.

    Article  CAS  Google Scholar 

  47. Hibbert, D. B.; Thordarson, P. The death of the job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun.2016, 52, 12792–12805.

    Article  CAS  Google Scholar 

  48. Minameyer, M. B.; Xu, Y. Z.; Frühwald, S.; Görling, A.; Von Delius, M.; Drewello, T. Investigation of cycloparaphenylenes (CPPs) and their noncovalent ring-in-ring and fullerene-in-ring complexes by (matrix-assisted) laser desorption/ionization and density functional theory. Chem.—Eur. J.2020, 26, 8729–8741.

    Article  CAS  Google Scholar 

  49. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev.2011, 40, 1305–1323.

    Article  CAS  Google Scholar 

  50. Fujitsuka, M.; Iwamoto, T.; Kayahara, E.; Yamago, S.; Majima, T. Enhancement of the quinoidal character for smaller [n]cycloparaphenylenes probed by Raman spectroscopy. ChemPhysChem2013, 14, 1570–1572.

    Article  CAS  Google Scholar 

  51. Chen, H.; Golder, M. R.; Wang, F.; Jasti, R.; Swan, A. K. Raman spectroscopy of carbon nanohoops. Carbon2014, 67, 203–213.

    Article  CAS  Google Scholar 

  52. Yamamoto, K.; Sonobe, H.; Matsubara, H.; Sato, M.; Okamoto, S.; Kitaura, K. Convenient new synthesis of [7]circulene. Angew. Chem., Int. Ed.1996, 35, 69–70.

    Article  Google Scholar 

  53. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965, 140, A1133–A1138.

    Article  Google Scholar 

  54. Anderson, J.; Burns, P. J.; Milroy, D.; Ruprecht, P.; Hauser, T.; Siegel, H. J. Deploying RMACC summit: An HPC resource for the rocky mountain region. In Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, New Orleans, USA, 2017, pp 1–7.

  55. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. General performance of density functionals. J. Phys. Chem. A2007, 111, 10439–10452.

    Article  CAS  Google Scholar 

  56. Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev.2016, 116, 5105–5154.

    Article  CAS  Google Scholar 

  57. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys.2001, 115, 3540–3544.

    Article  CAS  Google Scholar 

  58. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem.2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  59. Verma, P.; Truhlar, D. G. Status and challenges of density functional theory. Trends Chem.2020, 2, 302–318.

    Article  CAS  Google Scholar 

  60. Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. The CH/π interaction: Significance in molecular recognition. Tetrahedron1995, 51, 8665–8701.

    Article  CAS  Google Scholar 

  61. Brandl, M.; Weiss, M. S.; Jabs, A.; Suhnel, J.; Hilgenfeld, R. C-H center dot center dot center dot pi-interactions in proteins. J. Mol. Biol.2001, 307, 357–377.

    Article  CAS  Google Scholar 

  62. Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys.2011, 13, 13873–13900.

    Article  CAS  Google Scholar 

  63. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev.1991, 91, 893–928.

    Article  CAS  Google Scholar 

  64. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem.2012, 33, 580–592.

    Article  CAS  Google Scholar 

  65. Koch, U.; Popelier, P. L. A. Characterization of C−H−O hydrogen bonds on the basis of the charge density. J. Phys. Chem.1995, 99, 9747–9754.

    Article  CAS  Google Scholar 

  66. Takahashi, O.; Kohno, Y.; Saito, K. Molecular orbital calculations of the substituent effect on intermolecular CH/π interaction in C2H3X−C6H6 complexes (X = H, F, Cl, Br, and OH). Chem. Phys. Lett.2003, 378, 509–515.

    Article  CAS  Google Scholar 

  67. Connors, K. A. Binding Constants: The Measurement of Molecular Complex Stability; John Wiley & Sons: New York, 1987.

    Google Scholar 

  68. Kanagaraj, K.; Alagesan, M.; Inoue, Y.; Yang, C. Solvation effects in supramolecular chemistry. In Comprehensive Supramolecular Chemistry II; Atwood, J. L., Ed.; Elsevier: Amsterdam, 2017; pp. 11–60.

    Chapter  Google Scholar 

  69. Hunter, C. A.; Anderson, H. L. What is cooperativity?. Angew. Chem., Int. Ed.2009, 48, 7488–7499.

    Article  CAS  Google Scholar 

  70. Iwamoto, T.; Watanabe, Y.; Sakamoto, Y.; Suzuki, T.; Yamago, S. Selective and random syntheses of [n]cycloparaphenylenes (n = 8–13) and size dependence of their electronic properties. J. Am. Chem. Soc.2011, 133, 8354–8361.

    Article  CAS  Google Scholar 

  71. Darzi, E. R.; Jasti, R. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chem. Soc. Rev.2015, 44, 6401–6410.

    Article  CAS  Google Scholar 

  72. Hoshino, M.; Nakanishi-Ohno, Y.; Hashizume, D. Inference-assisted intelligent crystallography based on preliminary data. Sci. Rep.2019, 9, 11886.

    Article  CAS  Google Scholar 

  73. Lin, J. B.; Darzi, E. R.; Jasti, R.; Yavuz, I.; Houk, K. N. Solid-state order and charge mobility in [5]- to [12]cycloparaphenylenes. J. Am. Chem. Soc.2019, 141, 952–960.

    Article  CAS  Google Scholar 

  74. Salzner, U.; Aydin, A. Improved prediction of properties of π-conjugated oligomers with range-separated hybrid density functionals. J. Chem. Theory Comput.2011, 7, 2568–2583.

    Article  CAS  Google Scholar 

  75. Matunová, P.; Jirásek, V.; Rezek, B. DFT calculations reveal pronounced HOMO-LUMO spatial separation in polypyrrole-nanodiamond systems. Phys. Chem. Chem. Phys.2019, 21, 11033–11042.

    Article  Google Scholar 

  76. Van De Craats, A. M.; Warman, J. M. The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv. Mater.2001, 13, 130–133.

    Article  CAS  Google Scholar 

  77. Malloci, G.; Cappellini, G.; Mulas, G.; Mattoni, A. Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study. Chem. Phys.2011, 384, 19–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Bimala Lama, the Department of Chemistry, and the Raman Microspectroscopy Laboratory at the University of Colorado Boulder for the use of NMR, UV-Vis-NIR, FL, and Raman spectroscopy instrumentation. The authors also acknowledge the Materials and Molecular Analysis Center at Colorado State University for the use of MALDI-TOF-MS instrumentation. This study was partly supported by the American Chemical Society Petroleum Research Fund Doctoral New Investigator grant (No. 59067-DNI7). Further support was provided by the College of Engineering and Applied Science at the University of Colorado Boulder. This work utilized resources from the University of Colorado Boulder Research Computing Group, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carson. J. Bruns.

Electronic Supplementary Material

12274_2022_4145_MOESM1_ESM.pdf

All-hydrocarbon, all-conjugated cycloparaphenylene-polycyclic aromatic hydrocarbon host-guest complexes stabilized by CH−π interactions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Bruns, C.J. All-hydrocarbon, all-conjugated cycloparaphenylene-polycyclic aromatic hydrocarbon host-guest complexes stabilized by CH−π interactions. Nano Res. 15, 5545–5555 (2022). https://doi.org/10.1007/s12274-022-4145-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4145-5

Keywords

Navigation