Skip to main content
Log in

Interface synergistic effects induced multi-mode luminescence

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mechanoluminescence (ML) has become the most promising material for broad applications in display and sensing devices, in which ZnS is the most commonly studied one due to its stable and highly repetitive ML performances. In this work, we have successfully prepared the biphase ZnS on a large scale through the facile in-air molten salt protection strategy. The obtained biphase has the best ML properties, which is mainly attributed to the synergistic effects of piezo-photonic, defect, and interface dislocations. DFT calculations have confirmed that the defects activate the local S and Zn sites and reduce the energy barrier for electron transfer. The much stronger X-ray induced luminescence than the commercial scintillator is also reached. The application of ZnS particles in both papers and inks delivers superior performance. Meanwhile, ZnS particles based screen printing ink is able to directly print on paper, plastic and other carriers to form clear marks. These proposed paper and ink hold great potentials in applications of information security and anti-counterfeiting based on the multi-mode luminescence properties. This work provides a new avenue to understand and realize the high-performance multi-mode luminescence, inspiring more future works to extend on other ML materials and boosting their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331.

    Article  CAS  Google Scholar 

  2. Zhang, J. C.; Pan, C.; Zhu, Y. F.; Zhao, L. Z.; He, H. W.; Liu, X. F.; Qiu, J. R. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv. Mater. 2018, 30, 1804644.

    Article  Google Scholar 

  3. Du, Y. Y.; Jiang, Y.; Sun, T. Y.; Zhao, J. X.; Huang, B. L.; Peng, D. F.; Wang, F. Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 2019, 31, 1807062.

    Article  Google Scholar 

  4. Ren, W.; Lin, G. G.; Clarke, C.; Zhou, J. J.; Jin, D. Y. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 2020, 32, 1901430.

    Article  CAS  Google Scholar 

  5. Chen, B.; Zhang, X.; Wang, F. Expanding the toolbox of inorganic mechanoluminescence materials. Acc. Mater. Res. 2021, 2, 364–373.

    Article  CAS  Google Scholar 

  6. Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng X. G. Artificial skin to sense mechanical stress by visible light emission. Appl. Phys. Lett. 1999, 74, 1236–1238.

    Article  CAS  Google Scholar 

  7. Qian, X.; Cai, Z. R.; Su, M.; Li, F. Y.; Fang, W.; Li, Y. D.; Zhou, X.; Li, Q. Y.; Feng, X. Q.; Li, W. B. et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv. Mater. 2018, 30, 1800291.

    Article  Google Scholar 

  8. Wang, C. F.; Peng, D. F.; Pan, C. F. Mechanoluminescence materials for advanced artificial skin. Sci. Bull. 2020, 65, 1147–1149.

    Article  CAS  Google Scholar 

  9. Xiang, X. Q.; Lin, H.; Li, R. F.; Cheng, Y.; Huang, Q. M.; Xu, J.; Wang, C. Y.; Chen, X. Y.; Wang, Y. S. Stress-induced CsPbBr3 nanocrystallization on glass surface: Unexpected mechanoluminescence and applications. Nano Res. 2019, 12, 1049–1054.

    Article  CAS  Google Scholar 

  10. Wang, X. D.; Peng, D. F.; Huang, B. L.; Pan, C. F.; Wang, Z. L. Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications. Nano Energy 2019, 55, 389–400.

    Article  CAS  Google Scholar 

  11. Wang, X. D.; Ling, R.; Zhang, Y. F.; Que, M. L.; Peng, Y. Y.; Pan, C. F. Oxygen-assisted preparation of mechanoluminescent ZnS: Mn for dynamic pressure mapping. Nano Res. 2018, 11, 1967–1976.

    Article  CAS  Google Scholar 

  12. Peng, D. F.; Wang, C. F.; Ma, R. H.; Mao, S. H.; Qu, S. C.; Ren, Z. B.; Golovynskyi, S.; Pan, C. F. Mechanoluminescent materials for athletic analytics in sports science. Sci. Bull. 2021, 66, 206–209.

    Article  Google Scholar 

  13. Luo, J. J.; Gao, W. C.; Wang, Z. L. The Triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 2021, 33, 2004178.

    Article  CAS  Google Scholar 

  14. Zhuang, Y.; Xie, R. Mechanoluminescence rebrightening the prospects of stress sensing: A Review. Adv. Mater. 2021, 33, 2005925.

    Article  CAS  Google Scholar 

  15. Zhuang, Y.; Tu, D.; Chen, C.; Wang, L.; Zhang, H.; Xue, H.; Yuan, C.; Chen, G.; Pan, C.; Dai, L. et al. Force-induced charge carrier storage: a new route for stress recording. Light Sci. Appl 2020, 9, 182.

    Article  CAS  Google Scholar 

  16. Chen, C. J.; Zhuang, Y. X.; Tu, D.; Wang, X. D.; Pan, C. F.; Xie, R. J. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO. Nano Energy 2020, 68, 104329.

    Article  CAS  Google Scholar 

  17. Chen, C.; Zhuang, Y.; Li, X.; Lin, F.; Peng, D.; Tu, D.; Xie, A., Xie, R.-J. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials. Adv. Funct. Mater. 2021, 31, 2101567.

    Article  CAS  Google Scholar 

  18. Chen, W.; Zhuang, Y.; Chen, C.; Lv, Y.; Wang, M.-S.; Xie R.-J. Lanthanide-doped metal-organic frameworks with multicolor mechanoluminescence. Sci. China Mater. 2021, 64, 931.

    Article  CAS  Google Scholar 

  19. Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diode. Nature 2019, 575, 634–638.

    Article  CAS  Google Scholar 

  20. Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

    Article  CAS  Google Scholar 

  21. Hou, X. Y.; Peng, T.; Cheng, J. B.; Yu, Q. H.; Luo, R. J.; Lu, Y.; Liu, X. M.; Kim, J. K.; He, J.; Luo, Y. S. Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 2017, 10, 2570–2583.

    Article  CAS  Google Scholar 

  22. Liu, Y. C.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891–2900.

    Article  CAS  Google Scholar 

  23. Oshima, Y.; Nakamura, A.; Matsunaga, K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science 2018, 360, 772–774.

    Article  CAS  Google Scholar 

  24. Guo, W. S.; Yang, W. T.; Wang, Y.; Sun, X. L.; Liu, Z. Y.; Zhang, B. B.; Chang, J.; Chen, X. Y. Color-tunable Gd-Zn-Cu-In-S/ZnS quantum dots for dual modality magnetic resonance and fluorescence imaging. Nano Res. 2014, 7, 1581–1591.

    Article  CAS  Google Scholar 

  25. Yang, C. H.; Chen, B. H.; Zhou, J. X.; Chen, Y. M.; Suo, Z. G. Electroluminescence of giant stretchability. Adv. Mater. 2016, 28, 4480–4484.

    Article  CAS  Google Scholar 

  26. Tan, Y. J.; Godaba, H.; Chen, G.; Tan, S. T. M.; Wan, G. X.; Li, G. J. X.; Lee, P. M.; Cai, Y. Q.; Li, S.; Shepherd, R. F. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 2020, 19, 182–188.

    Article  CAS  Google Scholar 

  27. Ji, J. P.; Perepichka, I. F.; Bai, J. W.; Hu, D.; Xu, X. R.; Liu, M.; Wang, T.; Zhao, C. B.; Meng, H.; Huang, W. Three-phase electric power driven electroluminescent devices. Nat. Commun. 2021, 12, 54.

    Article  CAS  Google Scholar 

  28. Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

    Article  CAS  Google Scholar 

  29. Yue, Y. H.; Gao, Y. F.; Hu, W. T.; Xu, B.; Wang, J.; Zhang, X. J.; Zhang, Q.; Wang, Y. B.; Ge, B. H.; Yang, Z. Y. et al. Hierarchically structured diamond composite with exceptional toughness. Nature 2020, 582, 370–374.

    Article  CAS  Google Scholar 

  30. Chen, J. W.; Wang, J.; Xu, X. B.; Li, J. H.; Song, J. Z.; Lan, S.; Liu, S. N.; Cai, B.; Han, B. N.; Precht, J. T. et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 2021, 15, 238–244.

    Article  CAS  Google Scholar 

  31. Peng, D. F.; Chen, B.; Wang, F. Frontispiece: Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 2015, 80, 1209–1215.

    Article  CAS  Google Scholar 

  32. Wong, M. C.; Chen, L.; Tsang, M. K.; Zhang, Y.; Hao, J. H. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 2015, 27, 4488–4495.

    Article  CAS  Google Scholar 

  33. Wong, M. C.; Chen, L.; Bai, G. X.; Huang, L. B.; Hao, J. H. Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field. Adv. Mater. 2017, 29, 1701945.

    Article  Google Scholar 

  34. Patel, D. K.; Cohen, B. E.; Etgar, L.; Magdassi, S. Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark. Mater. Horiz. 2018, 5, 708–714.

    Article  CAS  Google Scholar 

  35. Song, S.; Song, B.; Cho, C. H.; Lim, S. K.; Jeong, S. M. Textile-fiber-embedded multiluminescent devices: A new approach to soft display systems. Mater. Today 2020, 32, 46–58.

    Article  CAS  Google Scholar 

  36. Srivastava, V.; Kamysbayev, V.; Hong, L.; Dunietz, E.; Klie, R. F.; Talapin, D. V. Colloidal chemistry in molten salts: Synthesis of luminescent In1xGaxP and In1−xGaxAs quantum dots. J. Am. Chem. Soc. 2018, 140, 12144–12151.

    Article  CAS  Google Scholar 

  37. Dash, A.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Molten salt shielded synthesis of oxidation prone materials in air. Nat. Mater. 2019, 18, 465–470.

    Article  CAS  Google Scholar 

  38. Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

    Article  CAS  Google Scholar 

  39. Zhou, B.; Yan, L.; Tao, L. L.; Song, N.; Wu, M.; Wang, T.; Zhang, Q. Y. Enabling photon upconversion and precise control of donor-acceptor interaction through interfacial energy transfer. Adv. Sci. 2018, 5, 1700667.

    Article  Google Scholar 

  40. Wu, C.; Zeng, S. S.; Wang, Z. F.; Wang, F.; Zhou, H.; Zhang, J. C.; Ci, Z. P.; Sun, L. Y. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility. Adv. Funct. Mater. 2018, 28, 1803168.

    Article  Google Scholar 

  41. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570.

    Article  CAS  Google Scholar 

  42. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  43. Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.

    Article  CAS  Google Scholar 

  44. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    Article  CAS  Google Scholar 

  45. Head, J. D.; Zerner, M. C. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Key R&D Program of China (2021YFA1501101), National Natural Science Foundation of China (Nos. 61875136, 21771156, and 52002246), Fundamental Research Project of Guangdong Province (No. 2020A1515011315), and the Guangdong Provincial Science Fund for Distinguished Young Scholars (No.22050000560), Shenzhen Fundamental Research Project (No. JCYJ20190808170601664), Science and Technology Innovation Project of Shenzhen Excellent Talents (No. RCBS20200714114919006), and Scientific Research Foundation as Phase II construction of high level University for the Youth Scholars of Shenzhen University 2019 (No. 000002110223), the National Natural Science Foundation of China/RGC Joint Research Scheme (N_PolyU502/21) and the funding for Projects of Strategic Importance of The Hong Kong Polytechnic University (Project Code: 1-ZE2V).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolong Huang or Dengfeng Peng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Wang, C., Yan, W. et al. Interface synergistic effects induced multi-mode luminescence. Nano Res. 15, 4457–4465 (2022). https://doi.org/10.1007/s12274-022-4115-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4115-y

Keywords

Navigation