Skip to main content
Log in

Iodine ion modification enables Ag nanowire film with improved carrier transport properties and stability as high-performance transparent conductor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ag nanowire (NW) film is the promising next generation transparent conductor. However, the residual long-chain polyvinylpyrrolidone (PVP, introduced during the synthesis of Ag NWs) layer greatly deteriorates the carrier transport capability of the Ag NW film and as well its long-term stability. Here, we report a one-step I ion modification strategy to completely replace the PVP layer with an ultrathin, dense layer of I ions, which not only greatly diminishes the resistance of the Ag NW film itself and that at interface of the Ag NW film and a functional layer (e.g., a current collect electrode) but also effectively isolates the approaching of corrosive species. Consequently, this strategy can simultaneously improve the carrier transport properties of the Ag NW film and its long-term stability, making it an ideal electric component in diverse devices. For example, the transparent heater and pressure sensor made from the I-wrapped Ag NW film, relative to their counterparts made from the PVP-wrapped Ag NW film, deliver much improved heating performance and pressure sensing performance, respectively. These results suggest a facile post treatment approach for thin Ag NW film with improved carrier transport properties and long-term stability, thereby greatly facilitating its downstream applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, S. J.; Phung, T. H.; Kim, S.; Rahman, M. K.; Kwon, K. S. Low-cost fabrication method for thin, flexible, and transparent touch screen sensors. Adv. Mater. Technol. 2020, 5, 2000441.

    Article  CAS  Google Scholar 

  2. Lee, S.; Bae, H. W.; Lampande, R.; Yang, H. I.; Oh, J. S.; Kwon, J. H. Ultrathin Ag transparent conducting electrode structure for next-generation optoelectronic applications. ACS Appl. Electron. Mater. 2020, 2, 1538–1544.

    Article  CAS  Google Scholar 

  3. Zhang, Y. K.; Ng, S. W.; Lu, X.; Zheng, Z. J. Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev. 2020, 120, 2049–2122.

    Article  CAS  Google Scholar 

  4. Angmo, D.; Krebs, F. C. Flexible ITO-free polymer solar cells. J. Appl. Polym. Sci. 2013, 129, 1–14.

    Article  CAS  Google Scholar 

  5. Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F. et al. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

    Article  CAS  Google Scholar 

  6. Lee, D. W.; Hong, T. K.; Kang, D. W. O.; Lee, J.; Heo, M.; Kim, J. Y.; Kim, B. S.; Shin, H. S. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J. Mater. Chem. 2011, 21, 3438–3442.

    Article  CAS  Google Scholar 

  7. Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

    Article  CAS  Google Scholar 

  8. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  CAS  Google Scholar 

  9. Liu, G. Z.; Wang, J.; Ge, Y. H.; Wang, Y. J.; Lu, S. Q.; Zhao, Y.; Tang, Y.; Soomro, A. M.; Hong, Q. M.; Yang, X. D. et al. Cu nanowires passivated with hexagonal boron nitride: An ultrastable, selectively transparent conductor. ACS Nano 2020, 14, 6761–6773.

    Article  CAS  Google Scholar 

  10. Liu, C. H.; Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 2011, 6, 75.

    Article  CAS  Google Scholar 

  11. Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955–960.

    Article  CAS  Google Scholar 

  12. Jharimune, S.; Pfukwa, R.; Chen, Z. F.; Anderson, J.; Klumperman, B.; Rioux, R. M. Chemical identity of poly (N-vinylpyrrolidone) end groups impact shape evolution during the synthesis of Ag nanostructures. J. Am. Chem. Soc. 2021, 143, 184–195.

    Article  CAS  Google Scholar 

  13. Hwang, J.; Shim, Y.; Yoon, S. M.; Lee, S. H.; Park, S. H. Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: Theoretical and experimental studies. RSC Adv. 2016, 6, 30972–30977.

    Article  CAS  Google Scholar 

  14. Ge, Y. J.; Duan, X. D.; Zhang, M.; Mei, L.; Hu, J. W.; Hu, W.; Duan, X. F. Direct room temperature welding and chemical protection of silver nanowire thin films for high performance transparent conductors. J. Am. Chem. Soc. 2018, 140, 193–199.

    Article  CAS  Google Scholar 

  15. Ge, Y. J.; Liu, J. F.; Liu, X. J.; Hu, J. W.; Duan, X. D.; Duan, X. F. Rapid electrochemical cleaning silver nanowire thin films for high-performance transparent conductors. J. Am. Chem. Soc. 2019, 141, 12251–12257.

    Article  CAS  Google Scholar 

  16. Liu, J. F.; Ge, Y. J.; Zhang, D. M.; Han, M.; Li, M. X.; Zhang, M.; Duan, X. D.; Yang, Z. L.; Hu, J. W. Plasma cleaning and self-limited welding of silver nanowire films for flexible transparent conductors. ACS Appl. Nano Mater. 2021, 4, 1664–1671.

    Article  CAS  Google Scholar 

  17. Cui, Z.; Poblete, F. R.; Zhu, Y. Tailoring the temperature coefficient of resistance of silver nanowire nanocomposites and their application as stretchable temperature sensors. ACS Appl. Mater. Interfaces 2019, 11, 17836–17842.

    Article  CAS  Google Scholar 

  18. Chung, W. H.; Jang, Y. R.; Hwang, Y. T.; Kim, S. H.; Kim, H. S. The surface plasmonic welding of silver nanowires via intense pulsed light irradiation combined with NIR for flexible transparent conductive film. Nanoscale 2020, 12, 17725–17737.

    Article  CAS  Google Scholar 

  19. Liu, Y.; Zhang, J. M.; Gao, H.; Wang, Y.; Liu, Q. X.; Huang, S. Y.; Guo, C. F.; Ren, Z. F. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 2017, 17, 1090–1096.

    Article  CAS  Google Scholar 

  20. Kang, H.; Song, S. J.; Sul, Y. E.; An, B. S.; Yin, Z. X.; Choi, Y.; Pu, L.; Yang, C. W.; Kim, Y. S.; Cho, S. M. et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes. ACS Nano 2018, 12, 4894–1902.

    Article  CAS  Google Scholar 

  21. Luo, B. B.; Fang, Y. S.; Li, J.; Huang, Z.; Hu, B.; Zhou, J. Improved stability of metal nanowires via electron beam irradiation induced surface passivation. ACS Appl. Mater. Interfaces 0019, 11, 12195–12201.

    Article  CAS  Google Scholar 

  22. Manikandan, A.; Lee, L.; Wang, Y. C.; Chen, C. W.; Chen, Y. Z.; Medina, H.; Tseng, J. Y.; Wang, Z. M.; Chueh, Y. L. Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. J. Mater. Chem. A 2017, 5, 13320–13328.

    Article  CAS  Google Scholar 

  23. Ahn, Y.; Jeong, Y.; Lee, Y. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide. ACS Appl. Mater. Interfaces 2012, 4, 6410–6414.

    Article  CAS  Google Scholar 

  24. Zhu, Y. Z.; Kim, S.; Ma, X. Z.; Byrley, P.; Yu, N.; Liu, Q. S.; Sun, X. M.; Xu, D.; Peng, S. S.; Hartel, M. C. et al. Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices. Nano Res. 2021, 14, 4294–4303.

    Article  CAS  Google Scholar 

  25. Eom, H.; Lee, J.; Pichitpajongkit, A.; Amjadi, M.; Jeong, J. H.; Lee, E.; Lee, J. Y.; Park, I. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization. Small 2014, 10, 4171–4181.

    CAS  Google Scholar 

  26. Zhao, Y.; Wang, X. J.; Yang, S. Z.; Kuttner, E.; Taylor, A. A.; Salemmilani, R.; Liu, X.; Moskovits, M.; Wu, B. H.; Dehestani, A. et al. Protecting the nanoscale properties of Ag nanowires with a solution-grown SnO2 monolayer as corrosion inhibitor. J. Am. Chem. Soc. 2019, 141, 13977–13986.

    Article  CAS  Google Scholar 

  27. Sohn, H.; Kim, S.; Shin, W.; Lee, J. M.; Lee, H.; Yun, D. J.; Moon, K. S.; Han, I. T.; Kwak, C.; Hwang, S. J. Novel flexible transparent conductive films with enhanced chemical and electromechanical sustainability: TiO2 nanosheet-Ag nanowire hybrid. ACS Appl. Mater. Interfaces 2018, 10, 2688–2700.

    Article  CAS  Google Scholar 

  28. Su, D. Y.; Hsu, C. C.; Lai, W. H.; Tsai, F. Y. Fabrication, mechanisms, and properties of high-performance flexible transparent conductive gas-barrier films based on Ag nanowires and atomic layer deposition. ACS Appl. Mater. Interfaces 2019, 11, 34212–34221.

    Article  CAS  Google Scholar 

  29. Madeira, A.; Plissonneau, M.; Servant, L.; Goldthorpe, I. A. Tréguer-Delapierre, M. Increasing silver nanowire network stability through small molecule passivation. Nanomaterials (Basel) 2019, 9, 899.

    Article  CAS  Google Scholar 

  30. Liu, G. S.; Xu, Y. W.; Kong, Y. F.; Wang, L.; Wang, J.; Xie, X.; Luo, Y. H.; Yang, B. R. Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl. Mater. Interfaces 2018, 10, 37699–37708.

    Article  CAS  Google Scholar 

  31. Yang, K. C.; Sung, D. I.; Shin, Y. J.; Yeom, G. Y. Highly oxidation-resistant silver nanowires by CxFy polymers using plasma treatment. Nanotechnology 2019, 30, 285702.

    Article  CAS  Google Scholar 

  32. Ning, Z. J.; Voznyy, O.; Pan, J.; Hoogland, S.; Adinolfi, V.; Xu, J. X.; Li, M.; Kirmani, A. R.; Sun, J. P.; Minor, J. et al. Air-stable n-type colloidal quantum dot solids. Nat. Mater. 2014, 13, 822–828.

    Article  CAS  Google Scholar 

  33. Chu, X. K.; Wang, K.; Tao, J. Q.; Li, S. X.; Ji, S. L.; Ye, C. H. Tackling the stability issues of silver nanowire transparent conductive films through FeCl3 dilute solution treatment. Nanomaterials (Basel) 2019, 9, 533.

    Article  CAS  Google Scholar 

  34. Genlik, S. P.; Tigan, D.; Kocak, Y.; Ercan, K. E.; Cicek, M. O.; Tunca, S.; Koylan, S.; Coskun, S.; Ozensoy, E.; Unalan, H. E. All-solution-processed, oxidation-resistant copper nanowire networks for optoelectronic applications with year-long stability. ACS Appl. Mater. Interfaces 2020, 12, 45136–45144.

    Article  CAS  Google Scholar 

  35. Al-Saidi, W. A.; Feng, H. J.; Fichthorn, K. A. Adsorption of polyvinylpyrrolidone on Ag surfaces: Insight into a structure-directing agent. Nano Lett. 2012, 12, 997–1001.

    Article  CAS  Google Scholar 

  36. Mao, H. B.; Feng, J. Y.; Ma, X.; Wu, C.; Zhao, X. J. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanopart. Res. 2012, 14, 887.

    Article  CAS  Google Scholar 

  37. Dai, W. L.; Cao, Y.; Deng, J. F.; Liao, Y. Y.; Hong, B. F. The role of iodide promoter in selective oxidation of methanol to formaldehyde. Catal. Lett. 1999, 63, 49–57.

    Article  CAS  Google Scholar 

  38. Hsieh, Y. C.; Betancourt, L. E.; Senanayake, S. D.; Hu, E. Y.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E. Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions. ACS Appl. Energy Mater. 2019, 2, 102–109.

    Article  CAS  Google Scholar 

  39. Han, M.; Ge, Y. J.; Liu, J. F.; Cao, Z. Z.; Li, M. X.; Duan, X. D.; Hu, J. W. Mixed polyvinyl pyrrolidone hydrogel-mediated synthesis of high-quality Ag nanowires for high-performance transparent conductors. J. Mater. Chem. A 2020, 8, 21062–21069.

    Article  CAS  Google Scholar 

  40. Wang, D. M.; Hua, H. M.; Liu, Y.; Tang, H. R.; Li, Y. X. Single Ag nanowire electrodes and single Pt@Ag nanowire electrodes: Fabrication, electrocatalysis, and surface-enhanced Raman scattering applications. Anal. Chem. 2019, 91, 4291–4295.

    Article  CAS  Google Scholar 

  41. Wojclechowski, M.; Go, W.; Osteryoung, J. Square-wave anodic stripping analysis in the presence of dissolved oxygen. Anal. Chem. 1985, 57, 155–158.

    Article  CAS  Google Scholar 

  42. Yokota, Y.; Wong, R. A.; Hong, M. S.; Hayazawa, N.; Kim, Y. Monatomic iodine dielectric layer for multimodal optical spectroscopy of dye molecules on metal surfaces. J. Am. Chem. Soc. 2021, 143, 15205–15214.

    Article  CAS  Google Scholar 

  43. Elechiguerra, J. L.; Larios-Lopez, L.; Liu, C.; Garcia-Gutierrez, D.; Camacho-Bragado, A.; Yacaman, M. J. Corrosion at the nanoscale: The case of silver nanowires and nanoparticles. Chem. Mater. 2005, 17, 6042–6052.

    Article  CAS  Google Scholar 

  44. Yue, Y.; Liu, N. S.; Liu, W. J.; Li, M.; Ma, Y. N.; Luo, C.; Wang, S. L.; Rao, J. Y.; Hu, X. K.; Su, J. et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 2018, 50, 79–87.

    Article  CAS  Google Scholar 

  45. Zheng, Y. J.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D. B.; Shi, X. Z.; Zhang, B.; Liu, C. T.; Shen, C. Y. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem. Eng. J. 2021, 420, 127720.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly thank the financial support from the National Natural Science Foundation of China (Nos. 21872047, 21673070, and 22072039) and Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xidong Duan, Yongchun Fu or Jiawen Hu.

Electronic Supplementary Material

12274_2022_4107_MOESM1_ESM.pdf

Iodine ion modification enables Ag nanowire film with improved carrier transport properties and stability as high-performance transparent conductor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Deng, D., Ge, Y. et al. Iodine ion modification enables Ag nanowire film with improved carrier transport properties and stability as high-performance transparent conductor. Nano Res. 15, 5410–5417 (2022). https://doi.org/10.1007/s12274-022-4107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4107-y

Keywords

Navigation