Skip to main content
Log in

An implantable antibacterial drug-carrier: Mesoporous silica coatings with size-tunable vertical mesochannels

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Implant-associated bacterial infection remains one of the most common and serious complications. Therefore, a surface boasting long-term antibacterial ability for implants is highly desirable. Herein, mesoporous silica coatings (MSCs) with vertical and size-tunable mesochannels are fabricated on a variety of metal substrates via a nano-interfacial oriented assembly approach. Such facile and versatile approach relies on the vertically oriented fusion of composite micelles on the nanoscale flatness surface of substrates. Such orientation assembly process endows the MSCs with vertical mesochannels, tunable mesopore size (ca. 5.5–13.5 nm), and switchable substrates even with complex and diversified surfaces. Importantly, the MSCs on titanium substrates (Ti@MSCs) exhibit excellent performances for drug adsorption and sustained release. The saturation adsorption capacity can reach 0.544 µg·cm−2 towards minocycline hydrochloride (MC-HCl) antibiotic molecules, which is 6.5 times as the bare titanium (Ti) substrate. In addition, the drug release time can be controlled from 84 to 216 h by simply adjusting the mesopore size. As a proof of concept, the Ti@MSCs can realize a higher antibacterial rate (95.9%), compared with the bare Ti (70.3%). The results highlight the high potential of MSCs as implant coating for long-term preventing and eliminating peri-implantitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su, K.; Tan, L.; Liu, X. M.; Cui, Z. D.; Zheng, Y. F.; Li, B.; Han, Y.; Li, Z. Y.; Zhu, S. L.; Liang, Y. Q. et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 2020, 14, 2077–2089.

    Article  CAS  Google Scholar 

  2. Li, J. M.; Jansen, J. A.; Walboomers, X. F.; Van Den Beucken, J. J. J. P. Mechanical aspects of dental implants and osseointegration: A narrative review. J. Mech. Behav. Biomed. Mater. 2020, 103, 103574.

    Article  CAS  Google Scholar 

  3. Wang, Q. G.; Zhou, P.; Liu, S. F.; Attarilar, S.; Ma, R. L. W.; Zhong, Y. S.; Wang, L. Q. Multi-scale surface treatments of titanium implants for rapid osseointegration: A review. Nanomaterials 2020, 10, 1244.

    Article  CAS  Google Scholar 

  4. Lensing, R.; Behrens, P.; Müller, P. P.; Lenarz, T.; Stieve, M. In vivo testing of a bioabsorbable magnesium alloy serving as total ossicular replacement prostheses. J. Biomater. Appl. 2014, 28, 688–696.

    Article  CAS  Google Scholar 

  5. He, G. P.; Wu, Y. H.; Zhang, Y.; Zhu, Y.; Liu, Y.; Li, N.; Li, M.; Zheng, G.; He, B. H.; Yin, Q. S. et al. Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties. J. Mater. Chem. B 2015, 3, 6676–6689.

    Article  CAS  Google Scholar 

  6. Tong, X.; Shi, Z. M.; Xu, L. C.; Lin, J. X.; Zhang, D. C.; Wang, K.; Li, Y. C.; Wen, C. E. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants. Acta Biomater. 2020, 102, 481–492.

    Article  CAS  Google Scholar 

  7. Wang, J. L.; Xu, J. K.; Hopkins, C.; Chow, D. H. K.; Qin, L. Biodegradable magnesium-based implants in orthopedics: A general review and perspectives. Adv. Sci. 2020, 7, 1902443.

    Article  CAS  Google Scholar 

  8. Yang, H. T.; Jia, B.; Zhang, Z. C.; Qu, X. H.; Li, G. N.; Lin, W. J.; Zhu, D. H.; Dai, K. R.; Zheng, Y. F. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020, 11, 401.

    Article  Google Scholar 

  9. Liu, R. H.; Chen, S. C.; Huang, P. N.; Liu, G. Q.; Luo, P.; Li, Z. P.; Xiao, Y.; Chen, Z. F.; Chen, Z. T. Immunomodulation-based strategy for improving soft tissue and metal implant integration and its implications in the development of metal soft tissue materials. Adv. Funct. Mater. 2020, 30, 1910672.

    Article  CAS  Google Scholar 

  10. Greer, A. I. M.; Goriainov, V.; Kanczler, J.; Black, C. R. M.; Turner, L. A.; Meek, R. M. D.; Burgess, K.; MacLaren, I.; Dalby, M. J.; Oreffo, R. O. C. et al. Nanopatterned titanium implants accelerate bone formation in vivo. ACS Appl. Mater. Interfaces 2020, 12, 33541–33549.

    Article  CAS  Google Scholar 

  11. Guo, T. Q.; Gulati, K.; Arora, H.; Han, P. P.; Fournier, B.; Ivanovski, S. Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater. 2021, 124, 33–49.

    Article  CAS  Google Scholar 

  12. Besinis, A.; Hadi, S. D.; Le, H. R.; Tredwin, C.; Handy, R. D. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide, and hydroxyapatite nanocoatings. Nanotoxicology 2017, 11, 327–338.

    Article  CAS  Google Scholar 

  13. Filipović, U.; Dahmane, R. G.; Ghannouchi, S.; Zore, A.; Bohinc, K. Bacterial adhesion on orthopedic implants. Adv. Colloid Interface Sci. 2020, 283, 102228.

    Article  Google Scholar 

  14. Tao, B. L.; Zhao, W. K.; Lin, C. C.; Yuan, Z.; He, Y.; Lu, L.; Chen, M. W.; Ding, Y.; Yang, Y. L.; Xia, Z. Z. L. et al. Surface modification of titanium implants by ZIF-8@Levo/LBL coating for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration. Chem. Eng. J. 2020, 390, 124621.

    Article  CAS  Google Scholar 

  15. Shirai, T.; Shimizu, T.; Ohtani, K.; Zen, Y.; Takaya, M.; Tsuchiya, H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011, 7, 1928–1933.

    Article  CAS  Google Scholar 

  16. Ripamonti, U.; Roden, L. C.; Renton, L. F. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials 2012, 33, 3813–3823.

    Article  CAS  Google Scholar 

  17. Badv, M.; Bayat, F.; Weitz, J. I.; Didar, T. F. Single and multifunctional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020, 258, 120291.

    Article  CAS  Google Scholar 

  18. Arcos, D.; Vallet-Regí, M. Substituted hydroxyapatite coatings of bone implants. J. Mater. Chem. B 2020, 8, 1781–1800.

    Article  CAS  Google Scholar 

  19. Du, X.; Li, X. Y.; Xiong, L.; Zhang, X. J.; Kleitz, F.; Qiao, S. Z. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 2016, 91, 90–127.

    Article  CAS  Google Scholar 

  20. Qiu, J. J.; Qian, W. H.; Zhang, J. K.; Chen, D. F.; Yeung, K. W. K.; Liu, X. Y. Minocycline hydrochloride loaded graphene oxide enables enhanced osteogenic activity in the presence of Grampositive bacteria. Staphylococcus aureus. J. Mater. Chem. B 2019, 7, 3590–3598.

    Article  CAS  Google Scholar 

  21. Chen, X.; Huang, X. Q.; Zheng, C. P.; Liu, Y. N.; Xu, T. Y.; Liu, J. Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties. J. Mater. Chem. B 2015, 3, 7020–7029.

    Article  CAS  Google Scholar 

  22. Zhao, L. Z.; Wang, H. R.; Huo, K. F.; Cui, L. Y.; Zhang, W. R.; Ni, H. W.; Zhang, Y. M.; Wu, Z. F.; Chu, P. K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011, 32, 5706–5716.

    Article  CAS  Google Scholar 

  23. Fu, J. Y.; Gu, Z. Y.; Liu, Y.; Zhang, J.; Song, H.; Yang, Y. N.; Yang, Y.; Noonan, O.; Tang, J.; Yu, C. Z. Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem. Sci. 2019, 10, 10388–10394.

    Article  CAS  Google Scholar 

  24. Zhao, Z. W.; Wang, X.; Jing, X. X.; Zhao, Y. J.; Lan, K.; Zhang, W.; Duan, L. L.; Guo, D. Y.; Wang, C. Y.; Peng, L. et al. General synthesis of ultrafine monodispersed hybrid nanoparticles from highly stable monomicelles. Adv. Mater. 2021, 33, 2100820.

    Article  CAS  Google Scholar 

  25. Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem., Int. Ed. 2014, 126, 254–258.

    Article  Google Scholar 

  26. Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503–2514.

    Article  CAS  Google Scholar 

  27. Pan, Z.; Zhang, K. R.; Gao, H. L.; Zhou, Y.; Yan, B. B.; Yang, C.; Zhang, Z. Y.; Dong, L.; Chen, S. M.; Xu, R. et al. Activating proper inflammation for wound-healing acceleration via mesoporous silica nanoparticle tissue adhesive. Nano Res. 2020, 13, 373–379.

    Article  CAS  Google Scholar 

  28. Song, H.; Nor, Y. A.; Yu, M. H.; Yang, Y. N.; Zhang, J.; Zhang, H. W.; Xu, C.; Mitter, N.; Yu, C. Z. Silica nanopollens enhance adhesion for long-term bacterial inhibition. J. Am. Chem. Soc. 2016, 138, 6455–6462.

    Article  CAS  Google Scholar 

  29. Häffner, S. M.; Parra-Ortiz, E.; Browning, K. L.; Jørgensen, E.; Skoda, M. W. A.; Montis, C.; Li, X. M.; Berti, D.; Zhao, D. Y.; Malmsten, M. Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano 2021, 15, 6787–6800.

    Article  Google Scholar 

  30. Kankala, R. K.; Han, Y. H.; Na, J.; Lee, C. H.; Sun, Z. Q.; Wang, S. B.; Kimura, T.; Ok, Y. S.; Yamauchi, Y.; Chen, A. Z. et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020, 32, 1907035.

    Article  CAS  Google Scholar 

  31. Wu, K. C. W.; Yamauchi, Y. Controlling physical features of mesoporous silicananoparticles (MSNs) for emerging applications. J. Mater. Chem. 2012, 22, 1251–1256.

    Article  CAS  Google Scholar 

  32. Kalantari, M.; Yu, M. H.; Yang, Y. N.; Strounina, E.; Gu, Z. Y.; Huang, X. D.; Zhang, J.; Song, H.; Yu, C. Z. Tailoring mesoporous-silica nanoparticles for robust immobilization of lipase and biocatalysis. Nano Res. 2017, 10, 605–617.

    Article  CAS  Google Scholar 

  33. Lei, C.; Cao, Y. X.; Hosseinpour, S.; Gao, F.; Liu, J. Y.; Fu, J. Y.; Staples, R.; Ivanovski, S.; Xu, C. Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Res. 2021, 14, 770–777.

    Article  CAS  Google Scholar 

  34. Liu, Y. P.; Shen, D. K.; Chen, G.; Elzatahry, A. A.; Pal, M.; Zhu, H. W.; Wu, L. L.; Lin, J. J.; Al-Dahyan, D.; Li, W. et al. Mesoporous silica thin membranes with large vertical mesochannels for nanosize-based separation. Adv. Mater. 2017, 29, 1702274.

    Article  Google Scholar 

  35. Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.

    Article  CAS  Google Scholar 

  36. Shinde, D. B.; Sheng, G.; Li, X.; Ostwal, M.; Emwas, A. H.; Huang, K. W.; Lai, Z. P. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 2018, 140, 14342–14349.

    Article  CAS  Google Scholar 

  37. Chang, H. J.; Chen, T. Y.; Zhao, Z. P.; Dai, Z. J.; Chen, Y. L.; Mou, C. Y.; Liu, Y. H. Ordered mesoporous zeolite thin films with perpendicular reticular nanochannels of wafer size area. Chem. Mater. 2018, 30, 8303–8313.

    Article  CAS  Google Scholar 

  38. Li, B.; Liu, Y. Q.; Wan, C. J.; Liu, Z. Y.; Wang, M.; Qi, D. P.; Yu, J. C.; Cai, P. Q.; Xiao, M.; Zeng, Y. et al. Mediating short-term plasticity in an artificial memristive synapse by the orientation of silica mesopores. Adv. Mater. 2018, 30, 1706395.

    Article  Google Scholar 

  39. Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. C hem. Soc. Rev. 2019, 48, 463–487.

    Article  CAS  Google Scholar 

  40. Lai, C. H.; Ashby, D. S.; Lin, T. C.; Lau, J.; Dawson, A.; Tolbert, S. H.; Dunn, B. S. Application of poly (3-hexylthiophene-2, 5-diyl) as a protective coating for high rate cathode materials. Chem. Mater. 2018, 30, 2589–2599.

    Article  CAS  Google Scholar 

  41. Iqbal, M.; Kim, J.; Yuliarto, B.; Jiang, B.; Li, C. L.; Dag, Ö.; Malgras, V.; Yamauchi, Y. Standing mesochannels: Mesoporous PdCu films with vertically aligned mesochannels from nonionic micellar solutions. ACS Appl. Mater. Inter faces 2018, 10, 40623–40630.

    Article  CAS  Google Scholar 

  42. Kao, K. C.; Lin, C. H.; Chen, T. Y.; Liu, Y. H.; Mou, C. Y. A general method for growing large area mesoporous silica thin films on flat substrates with perpendicular nanochannels. J. Am. Chem. Soc. 2015, 137, 3779–3782.

    Article  CAS  Google Scholar 

  43. Feng, X. D.; Imran, Q.; Zhang, Y. Z.; Sixdenier, L.; Lu, X. L.; Kaufman, G.; Gabinet, U.; Kawabata, K.; Elimelech, M.; Osuji, C. O. Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. Sci. Adv. 2019, 5, eaav9308.

    Article  CAS  Google Scholar 

  44. Houben, S. J. A.; Van Merwijk, S. A.; Langers, B. J. H.; Oosterlaken, B. M.; Borneman, Z.; Schenning, A. P. H. J. Smectic liquid crystalline polymer membranes with aligned nanopores in an anisotropic scaffold. ACS Appl. Mater. Interf aces 2021, 13, 7592–7599.

    Article  CAS  Google Scholar 

  45. Li, X. J.; Janke, A.; Formanek, P.; Fery, A.; Stamm, M.; Tripathi, B. P. High permeation and antifouling polysulfone ultrafiltration membranes with in situ synthesized silica nanoparticles. Mater. Today Commun. 2020, 22, 100784.

    Article  CAS  Google Scholar 

  46. Wang, J. R.; Vilà, N.; Walcarius, A. Redox-active vertically aligned mesoporous silica thin films as transparent surfaces for energy storage applications. ACS Appl. Mater. Interf aces 2020, 12, 24262–24270.

    Article  CAS  Google Scholar 

  47. Zhao, J. B.; Yuan, H. F.; Yang, G.; Liu, Y. F.; Qin, X. M.; Chen, Z.; Weng-Chon, C.; Zhou, L. M.; Fang, S. M. AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3732-1.

  48. Jiokeng, S. L. Z.; Tonle, I. K.; Walcarius, A. Amino-attapulgite/mesoporous silica composite films generated by electro-assisted self-assembly for the voltammetric determination of diclofenac. Sens. Actuators B Chem. 2019, 287, 296–305.

    Article  CAS  Google Scholar 

  49. Vilà, N.; Ghanbaja, J.; Walcarius, A. Clickable bifunctional and vertically aligned mesoporous silica films. Adv. Mater. Interfaces 2016, 3, 1500440.

    Article  Google Scholar 

  50. Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

    Article  CAS  Google Scholar 

  51. Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Y. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 17, 8203–8237.

    Article  Google Scholar 

  52. Liu, M. L.; Chen, B. B.; Li, R. S.; Li, C. M.; Zou, H. Y.; Huang, C. Z. Dendritic CuSe with hierarchical side-branches: Synthesis, efficient adsorption, and enhanced photocatalytic activities under daylight. ACS Sustainable Chem. Eng. 2017, 5, 4154–4160.

    Article  CAS  Google Scholar 

  53. Liu, Y. P.; Wang, J. X.; Teng, W.; Hung, C. T.; Zhai, Y. P.; Shen, D. K.; Li, W. Ultrahigh adsorption capacity and kinetics of vertically oriented mesoporous coatings for removal of organic pollutants. Small 2021, 17, 2101363.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (Nos. 2018YFE0201701 and 2018YFA0209401), and the National Natural Science Foundation of China (Nos. 22088101, 21733003, and 21975050), Science and Technology Commission of Shanghai Municipality (Nos. 18ZR1406300 and 19JC1410700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Bi or Wei Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Huang, F., Hung, CT. et al. An implantable antibacterial drug-carrier: Mesoporous silica coatings with size-tunable vertical mesochannels. Nano Res. 15, 4243–4250 (2022). https://doi.org/10.1007/s12274-021-4055-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4055-y

Keywords

Navigation