Skip to main content
Log in

Spatially targeting of tumor-associated macrophages and cancer cells for suppression of spontaneously metastatic tumor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The interaction between cancer cells and M2 tumor-associated macrophages (M2-TAMs) facilitates tumor growth and metastasis. However, cancer cells and M2-TAMs have different spatial distribution patterns, which requires distinct drug delivery strategies. Herein, based on different tumor-penetrating ability of nanocarriers, we developed a combinatory strategy that consists of a TAMs-targeting liposome (alanine-alanine-asparagine (AAN)-Lip-regorafenib (Rego)) and a cancer cells-targeting copolymer (internalizing RGD modified with N-(2-hydroxypropyl) methacrylamide-doxorubicin (iRGD-HD)). Our study confirmed AAN-Lip-Rego accumulated at perivascular sites where M2-TAM is located, while iRGD-HD penetrated into deep site of tumor to enter cancer cells. Thereafter, we found iRGD-HD induced cancer cells undergoing immunogenic cell death to enhance tumor infiltration of CD8+ T cells. Meanwhile, AAN-Lip-Rego efficiently repolarized TAMs from M2 into M1 to alleviate tumor immunosuppression, thus reviving CD8+ T cells. Moreover, the repolarization of TAMs led to dramatic downregulation of prometastatic factors expressed on cancer cells. As a result, such combinatory approach elicited robust antitumor immune responses and generated considerable anti-tumor and anti-metastasis efficacy to markedly inhibit primary tumor and spontaneous lung metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.

    Article  CAS  Google Scholar 

  2. Casares, N.; Pequignot, M. O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005, 202, 1691–1701.

    Article  CAS  Google Scholar 

  3. Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111.

    Article  CAS  Google Scholar 

  4. Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72.

    Article  CAS  Google Scholar 

  5. Ginhoux, F.; Schultze, J. L.; Murray, P. J.; Ochando, J.; Biswas, S. K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 2016, 17, 34–40.

    Article  CAS  Google Scholar 

  6. Caillou, B.; Talbot, M.; Weyemi, U.; Pioche-Durieu, C.; Al Ghuzlan, A.; Bidart, J. M.; Chouaib, S.; Schlumberger, M.; Dupuy, C. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS One 2011, 6, e22567.

    Article  CAS  Google Scholar 

  7. Wynn, T. A.; Chawla, A.; Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455.

    Article  CAS  Google Scholar 

  8. Komohara, Y.; Fujiwara, Y.; Ohnishi, K.; Takeya, M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Del. Rev. 2016, 99, 180–185.

    Article  CAS  Google Scholar 

  9. Zhan, X. D.; Jia, L. X.; Niu, Y. M.; Qi, H. X.; Chen, X. P.; Zhang, Q. W.; Zhang, J. F.; Wang, Y. T.; Dong, L.; Wang, C. M. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014, 35, 10046–10057.

    Article  CAS  Google Scholar 

  10. Qiu, S. Q.; Waaijer, S. J. H.; Zwager, M. C.; De Vries, E. G. E.; Van Der Vegt, B.; Schröder, C. P. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat. Rev. 2018, 70, 178–189.

    Article  CAS  Google Scholar 

  11. Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015, 9, 16–30.

    Article  CAS  Google Scholar 

  12. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer 2002, 2, 420–430.

    Article  CAS  Google Scholar 

  13. Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 2006, 42, 717–727.

    Article  CAS  Google Scholar 

  14. Shi, C. R.; Liu, T.; Guo, Z. D.; Zhuang, R. Q.; Zhang, X. Z.; Chen, X. Y. Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration. Nano Lett. 2018, 18, 7330–7342.

    Article  CAS  Google Scholar 

  15. Wei, B. C.; Pan, J. M.; Yuan, R. T.; Shao, B. F.; Wang, Y.; Guo, X.; Zhou, S. B. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy. Nano Lett. 2021, 21, 4231–4240.

    Article  CAS  Google Scholar 

  16. Carmona-Fontaine, C.; Bucci, V.; Akkari, L.; Deforet, M.; Joyce, J. A.; Xavier, J. B. Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc. Natl. Acad. Sci. USA 2013, 110, 19402–19407.

    Article  CAS  Google Scholar 

  17. Wang, J. X.; Shen, S.; Li, J.; Cao, Z. Y.; Yang, X. Z. Precise depletion of tumor seed and growing soil with shrinkable nanocarrier for potentiated cancer chemoimmunotherapy. ACS Nano 2021, 15, 4636–4646.

    Article  CAS  Google Scholar 

  18. Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popović, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431.

    Article  CAS  Google Scholar 

  19. Kunjachan, S.; Pola, R.; Gremse, F.; Theek, B.; Ehling, J.; Moeckel, D.; Hermanns-Sachweh, B.; Pechar, M.; Ulbrich, K.; Hennink, W. E. et al. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett. 2014, 14, 972–981.

    Article  CAS  Google Scholar 

  20. Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani, S.; Zhang, Y. W.; Chen, Y. Y.; MacMillan, P.; Chan, W. C. W. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018, 12, 8423–8435.

    Article  CAS  Google Scholar 

  21. Li, L.; Sun, W.; Zhong, J. J.; Yang, Q. Q.; Zhu, X.; Zhou, Z.; Zhang, Z. R.; Huang, Y. Multistage nanovehicle delivery system based on stepwise size reduction and charge reversal for programmed nuclear targeting of systemically administered anticancer drugs. Adv. Funct. Mater. 2015, 25, 4101–4113.

    Article  CAS  Google Scholar 

  22. Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.

    Article  CAS  Google Scholar 

  23. Song, X.; Wan, Z. Y.; Chen, T. J.; Fu, Y.; Jiang, K. J.; Yi, X. L.; Ke, H.; Dong, J. X.; Yang, L. Q.; Li, L. et al. Development of a multitarget peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 2016, 108, 44–56.

    Article  CAS  Google Scholar 

  24. Liu, Z.; Xiong, M.; Gong, J. B.; Zhang, Y.; Bai, N.; Luo, Y. P.; Li, L. Y.; Wei, Y. Q.; Liu, Y. H.; Tan, X. Y. et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun. 2014, 5, 4280.

    Article  CAS  Google Scholar 

  25. Yin, S.; Xia, C. Y.; Wang, Y. S.; Wan, D. D.; Rao, J. D.; Tang, X.; Wei, J. J.; Wang, X. H.; Li, M.; Zhang, Z. R. et al. Dual receptor recognizing liposomes containing paclitaxel and hydroxychloroquine for primary and metastatic melanoma treatment via autophagy-dependent and independent pathways. J. Control. Release 2018, 288, 148–160.

    Article  CAS  Google Scholar 

  26. Yin, H.; Yang, J.; Zhang, Q.; Wang, H. Y.; Xu, J. J.; Zheng, J. N. iRGD as a tumor-penetrating peptide for cancer therapy. Mol. Med. Rep. 2017, 15, 2925–2930.

    Article  CAS  Google Scholar 

  27. Zhao, P. F.; Yin, W. M.; Wu, A. H.; Tang, Y. S.; Wang, J. Y.; Pan, Z. Z.; Lin, T. T.; Zhang, M.; Chen, B. F.; Duan, Y. F. et al. Dual-targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug-resistant cancer therapy. Adv. Funct. Mater. 2017, 27, 1700403.

    Article  Google Scholar 

  28. Zhou, M. L.; Li, L. J.; Li, L.; Lin, X.; Wang, F. L.; Li, Q. Y.; Huang, Y. Overcoming chemotherapy resistance via simultaneous drug-efflux circumvention and mitochondrial targeting. Acta Pharm. Sin. B 2019, 9, 615–625.

    Article  Google Scholar 

  29. Li, L.; Yang, Q. Q.; Zhou, Z.; Zhong, J. J.; Huang, Y. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials 2014, 35, 5171–5187.

    Article  CAS  Google Scholar 

  30. Tang, M. L.; Zhou, M. L.; Huang, Y.; Zhong, J. J.; Zhou, Z.; Luo, K. Dual-sensitive and biodegradable core-crosslinked HPMA copolymer-doxorubicin conjugate-based nanoparticles for cancer therapy. Polym. Chem. 2017, 8, 2370–2380.

    Article  CAS  Google Scholar 

  31. Zhou, M. L.; Luo, C. H.; Zhou, Z.; Li, L.; Huang, Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J. Control. Release 2021, 334, 248–262.

    Article  CAS  Google Scholar 

  32. Peng, H. G.; Chen, B. F.; Huang, W.; Tang, Y. B.; Jiang, Y. F.; Zhang, W. Y.; Huang, Y. Z. Reprogramming tumor-associated macrophages to reverse EGFRT790M resistance by dual-targeting codelivery of gefitinib/vorinostat. Nano Lett. 2017, 17, 7684–7690.

    Article  CAS  Google Scholar 

  33. Wang, H. R.; Tang, Y. S.; Fang, Y. F.; Zhang, M.; Wang, H. Y.; He, Z. D.; Wang, B.; Xu, Q.; Huang, Y. Z. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 2019, 19, 2935–2944.

    Article  Google Scholar 

  34. Liu, Y.; Cao, X. T. Immunosuppressive cells in tumor immune escape and metastasis. J. Mol. Med. 2016, 94, 509–522.

    Article  Google Scholar 

  35. Lorenzo-Sanz, L.; Muñoz, P. Tumor-infiltrating immunosuppressive cells in cancer-cell plasticity, tumor progression and therapy response. Cancer Microenviron. 2019, 12, 119–132.

    Article  Google Scholar 

  36. Yuan, Z. Y.; Luo, R. Z.; Peng, R. J.; Wang, S. S.; Xue, C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 2014, 7, 1475–1480.

    Article  Google Scholar 

  37. Lin, Y. X.; Xu, J. X.; Lan, H. Y. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76.

    Article  Google Scholar 

  38. Georgoudaki, A. M.; Prokopec, K. E.; Boura, V. F.; Hellqvist, E.; Sohn, S.; Östling, J.; Dahan, R.; Harris, R. A.; Rantalainen, M.; Klevebring, D. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016, 15, 2000–2011.

    Article  CAS  Google Scholar 

  39. Fu, L. Q.; Du, W. L.; Cai, M. H.; Yao, J. Y.; Zhao, Y. Y.; Mou, X. Z. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell. Immunol. 2020, 353, 104119.

    Article  CAS  Google Scholar 

  40. Saharinen, P.; Eklund, L.; Pulkki, K.; Bono, P.; Alitalo, K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 2011, 17, 347–362.

    Article  CAS  Google Scholar 

  41. Lian, L.; Li, X. L.; Xu, M. D.; Li, X. M.; Wu, M. Y.; Zhang, Y.; Tao, M.; Li, W.; Shen, X. M.; Zhou, C. et al. VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer 2019, 19, 183.

    Article  Google Scholar 

  42. Owyong, M.; Chou, J.; Van Den Bijgaart, R. J.; Kong, N.; Efe, G.; Maynard, C.; Talmi-Frank, D.; Solomonov, I.; Koopman, C.; Hadler-Olsen, E. et al. MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Sci. Alliance 2019, 2, e201800226.

    Google Scholar 

  43. Zheng, H. C.; Takahashi, H.; Murai, Y.; Cui, Z. G.; Nomoto, K.; Niwa, H.; Tsuneyama, K.; Takano, Y. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006, 26, 3579–3583.

    CAS  Google Scholar 

  44. Smith, M. C. P.; Luker, K. E.; Garbow, J. R.; Prior, J. L.; Jackson, E.; Piwnica-Worms, D.; Luker, G. D. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004, 64, 8604–8612.

    Article  CAS  Google Scholar 

  45. Darash-Yahana, M.; Pikarsky, E.; Abramovitch, R.; Zeira, E.; Pal, B.; Karplus, R.; Beider, K.; Avniel, S.; Kasem, S.; Galun, E. et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 2004, 18, 1240–1242.

    Article  CAS  Google Scholar 

  46. Mukherjee, D.; Zhao, J. H. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am. J. Cancer Res. 2013, 3, 46–57.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation for Distinguished Young Scholars (No. 81625023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Xie, D., Zhou, Z. et al. Spatially targeting of tumor-associated macrophages and cancer cells for suppression of spontaneously metastatic tumor. Nano Res. 15, 3446–3457 (2022). https://doi.org/10.1007/s12274-021-3976-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3976-9

Keywords

Navigation