Skip to main content
Log in

Solution processed high performance perovskite quantum dots/ZnO phototransistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Phototransistors that can detect visible light have been fabricated using solution processed zinc oxide channel / zirconium oxide gate insulator thin film transistors (TFTs) and room temperature synthesized perovskite quantum dots (PeQDs) as active layer. Typical ZnO thin film transistors did not show a photocurrent under visible light illumination. However, ZnO TFTs decorated with PeQDs exhibited enhanced photocurrent upon exposure to visible light. The device had a responsivity of 567 A/W (617 A/W), a high detectivity of 6.59 × 1013 Jones (1.85 × 1014 J) and a high sensitivity of 107 (108) under green (blue) light at a low drain voltage of 0.1 V. The high photo-responsivity and detectivity under green light resulted from the combination of short ligands in the QDs films and the high mobility of the spray coated ZnO films. Those results are relevant for the development of low cost and low energy consumption phototransistors working in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, X. G.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396.

    Article  CAS  Google Scholar 

  2. Shi, J. L.; Zhang, J. Y.; Yang, L.; Qu, M.; Qi, D. C.; Zhang, K. H. L. Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202006230.

  3. Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Martins, R. F. P.; Pereira, L. M. N. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 2004, 85, 2541–2543.

    Article  CAS  Google Scholar 

  4. Hwang, D. K.; Lee, Y. T.; Lee, H. S.; Lee, Y. J.; Shokouh, S. H.; Kyhm, J. H.; Lee, J.; Kim, H. H.; Yoo, T. H.; Nam, S. H. et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater. 2016, 8, e233.

    Article  CAS  Google Scholar 

  5. Yu, J. J.; Javaid, K.; Liang, L. Y.; Wu, W. H.; Liang, Y.; Song, A. R.; Zhang, H. L.; Shi, W.; Chang, T. C.; Cao, H. T. Highperformance visible-blind ultraviolet photodetector based on IGZO TFT coupled with p-n heterojunction. ACS Appl. Mater. Interfaces 2018, 10, 8102–8109.

    Article  CAS  Google Scholar 

  6. Zhao, C. M.; Kanicki, J. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor X-ray imager for digital breast tomosynthesis. Med. Phys. 2014, 41, 091902.

    Article  Google Scholar 

  7. Lujan, R. A.; Street, R. A. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett. 2012, 33, 688–690.

    Article  CAS  Google Scholar 

  8. Jeon, S.; Ahn, S. E.; Song, I.; Kim, C. J.; Chung, U. I.; Lee, E.; Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K. et al. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 2012, 11, 301–305.

    Article  CAS  Google Scholar 

  9. Saha, J. K.; Bukke, R. N.; Mude, N. N.; Jang, J. Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors. Sci. Rep. 2020, 10, 8999.

    Article  CAS  Google Scholar 

  10. Hasan, M.; Ahn, C. W.; Kim, T. H.; Jang, J. Solution processed high performance ferroelectric Hf0.5Zr0.5O2 thin film transistor on glass substrate. Appl. Phys. Lett. 2021, 118, 152901.

    Article  CAS  Google Scholar 

  11. Islam, M.; Saha, J. K.; Bukke, R. N.; Hasan, M.; Billah, M. M.; Mude, N. N.; Ali, A.; Jang, J. Solution-processed La alloyed ZrOx high-k dielectric for high-performance ZnO thin-film transistors. IEEE Electron Device Lett. 2020, 41, 1021–1024.

    CAS  Google Scholar 

  12. Saha, J. K.; Billah, M. M.; Bukke, R. N.; Kim, Y. G.; Mude, N. N.; Siddik, A. B.; Islam, M.; Do, Y.; Choi, M.; Jang, J. Highly stable, nanocrystalline, ZnO thin-film transistor by spray pyrolysis using high-k dielectric. IEEE Trans. Electron Devices 2020, 67, 1021–1026.

    Article  CAS  Google Scholar 

  13. Chang, S. J.; Chang, T. H.; Weng, W. Y.; Chiu, C. J.; Chang, S. P. Amorphous InGaZnO ultraviolet phototransistors with a thin Ga2O3 layer. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3803605.

    Google Scholar 

  14. Ivanoff Reyes, P.; Ku, C. J.; Duan, Z. Q.; Xu, Y.; Garfunkel, E.; Lu, Y. C. Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Appl. Phys. Lett. 2012, 101, 031118.

    Article  Google Scholar 

  15. Yu, J. L.; Shin, S. W.; Lee, K. H.; Park, J. S.; Kang, S. J. Visible-light phototransistors based on InGaZnO and silver nanoparticles. J. Vac. Sci. Technol. B 2015, 33, 061211.

    Article  Google Scholar 

  16. Park, S. J.; Lee, S. M.; Kang, S. J.; Lee, K. H.; Park, J. S. Plasmon-enhanced photocurrent of Ge-doped InGaO thin film transistors using silver nanoparticles. J. Vac. Sci. Technol. A 2015, 33, 021101.

    Article  Google Scholar 

  17. Cho, N. K.; Lee, S. M.; Song, K.; Kang, S. J. Enhanced quantum-dot light-emitting diodes using gold nanorods. J. Korean Phys. Soc. 2015, 67, 1667–1671.

    Article  CAS  Google Scholar 

  18. Lee, S. M.; Shin, D.; Cho, N. K.; Yi, Y.; Kang, S. J. A solution-processable inorganic hole injection layer that improves the performance of quantum-dot light-emitting diodes. Curr. Appl. Phys. 2017, 17, 442–447.

    Article  Google Scholar 

  19. Lee, S. M.; Park, S. J.; Lee, K. H.; Park, J. S.; Park, S.; Yi, Y.; Kang, S. J. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots. Appl. Phys. Lett. 2015, 106, 031112.

    Article  Google Scholar 

  20. Kim, J.; Kwon, S. M.; Kang, Y. K.; Kim, Y. H.; Lee, M. J.; Han, K.; Facchetti, A.; Kim, M. G.; Park, S. K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801.

    Article  CAS  Google Scholar 

  21. Shin, S. W.; Lee, K. H.; Park, J. S.; Kang, S. J. Highly transparent, visible-light photodetector based on oxide semiconductors and quantum dots. ACS Appl. Mater. Interfaces 2015, 7, 19666–19671.

    Article  CAS  Google Scholar 

  22. Kim, J.; Kwon, S. M.; Jo, C.; Heo, J. S.; Kim, W. B.; Jung, H. S.; Kim, Y. H.; Kim, M. G.; Park, S. K. Highly efficient photo-induced charge separation enabled by metal-chalcogenide interfaces in quantum-dot/metal-oxide hybrid phototransistors. ACS Appl. Mater. Interfaces 2020, 12, 16620–16629.

    Article  CAS  Google Scholar 

  23. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  24. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

    Article  CAS  Google Scholar 

  25. Yu, H.; Liu, X. Y.; Yan, L. Z.; Zou, T. Y.; Yang, H.; Liu, C.; Zhang, S. D.; Zhou, H. Enhanced UV-visible detection of InGaZnO phototransistors via CsPbBr3 quantum dots. Semicond. Sci. Technol. 2019, 34, 125013.

    Article  CAS  Google Scholar 

  26. Du, S. N.; Li, G. T.; Cao, X. H.; Wang, Y.; Lu, H. L.; Zhang, S. D.; Liu, C.; Zhou, H. Oxide semiconductor phototransistor with organolead trihalide perovskite light absorber. Adv. Electron. Mater. 2017, 3, 1600325.

    Article  Google Scholar 

  27. Zhang, X.; Li, Q.; Yan, S. K.; Lei, W.; Chen, J.; Qasim, K. A novel phototransistor device with dual active layers composited of CsPbBr3 and ZnO quantum dots. Materials 2019, 12, 1215.

    Article  CAS  Google Scholar 

  28. Liu, H.; Zhang, X. W.; Zhang, L. Q.; Yin, Z. G.; Wang, D. G.; Meng, J. H.; Jiang, Q.; Wang, Y.; You, J. B. A high-performance photodetector based on an inorganic perovskite-ZnO heterostructure. J. Mater. Chem. C 2017, 5, 6115–6122.

    Article  CAS  Google Scholar 

  29. Li, Y.; Shi, Z. F.; Li, S.; Lei, L. Z.; Ji, H. F.; Wu, D.; Xu, T. T.; Tian, Y. T.; Li, X. J. High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. J. Mater. Chem. C 2017, 5, 8355–8360.

    Article  CAS  Google Scholar 

  30. Yu, J. C.; Chen, X.; Wang, Y.; Zhou, H.; Xue, M. N.; Xu, Y.; Li, Z. S.; Ye, C.; Zhang, J.; van Aken, P. A. et al. A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure. J. Mater. Chem. C 2016, 4, 7302–7308.

    Article  CAS  Google Scholar 

  31. Liu, X.; Tao, Z.; Kuang, W. J.; Huang, Q. Q.; Li, Q.; Chen, J.; Lei, W. Dual-gate phototransistor with perovskite quantum dots-PMMA photosensing nanocomposite insulator. IEEE Electron Device Lett. 2017, 38, 1270–1273.

    Article  CAS  Google Scholar 

  32. Liu, X.; Kuang, W. J.; Ni, H. B.; Tao, Z.; Huang, Q. Q.; Chen, J.; Liu, Q. Q.; Chang, J. H.; Lei, W. A highly sensitive and fast graphene nanoribbon/CsPbBr3 quantum dot phototransistor with enhanced vertical metal oxide heterostructures. Nanoscale 2018, 10, 10182–10189.

    Article  CAS  Google Scholar 

  33. Miao, J. L.; Zhang, F. J. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741–1791.

    Article  CAS  Google Scholar 

  34. Tang, R. D.; Han, S. C.; Teng, F.; Hu, K.; Zhang, Z. M.; Hu, M. X.; Fang, X. S. Size-controlled graphene nanodot arrays/ZnO hybrids for high-performance UV photodetectors. Adv. Sci. 2018, 5, 1700334.

    Article  Google Scholar 

  35. Peng, W. B.; Yu, R. M.; Wang, X. F.; Wang, Z. N.; Zou, H. Y.; He, Y. N.; Wang, Z. L. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 2016, 9, 3695–3704.

    Article  CAS  Google Scholar 

  36. Li, Z. Q.; Li, Z. L.; Shi, Z. F.; Fang, X. S. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure. Adv. Funct. Mater. 2020, 30, 2002634.

    Article  CAS  Google Scholar 

  37. Li, S. X.; Xu, Y. S.; Li, C. L.; Guo, Q.; Wang, G.; Xia, H.; Fang, H. H.; Shen, L.; Sun, H. B. Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 2020, 32, 2001998.

    Article  CAS  Google Scholar 

  38. Wang, H. P.; Li, S. Y.; Liu, X. Y.; Shi, Z. F.; Fang, X. S.; He, J. H. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 2021, 33, 2003309.

    Article  CAS  Google Scholar 

  39. Zhang, Y. Q.; Ma, Y.; Wang, Y. X.; Zhang, X. D.; Zuo, C. T.; Shen, L.; Ding, L. M. Lead-free perovskite photodetectors: Progress, challenges, and opportunities. Adv. Mater. 2021, 33, 2006691.

    Article  CAS  Google Scholar 

  40. Li, C. L.; Ma, Y.; Xiao, Y. F.; Shen, L.; Ding, L. M. Advances in perovskite photodetectors. InfoMat 2020, 2, 1247–1256.

    Article  CAS  Google Scholar 

  41. Moyen, E.; Kanwat, A.; Cho, S.; Jun, H.; Aad, R.; Jang, J. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices. Nanoscale 2018, 10, 8591–8599.

    Article  CAS  Google Scholar 

  42. Nugraha, M. I.; Yarali, E.; Firdaus, Y.; Lin, Y. B.; El-Labban, A.; Gedda, M.; Lidorikis, E.; Yengel, E.; Faber, H.; Anthopoulos, T. D. Rapid photonic processing of high-electron-mobility PbS colloidal quantum dot transistors. ACS Appl. Mater. Interfaces 2020, 12, 31591–31600.

    Article  CAS  Google Scholar 

  43. Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204.

    Article  Google Scholar 

  44. Kirmani, A. R.; Walters, G.; Kim, T.; Sargent, E. H.; Amassian, A. Optimizing solid-state ligand exchange for colloidal quantum dot optoelectronics: How much is enough? ACS Appl. Energy Mater. 2020, 3, 5385–5392.

    Article  CAS  Google Scholar 

  45. Moyen, E.; Jun, H.; Kim, H. M.; Jang, J. Surface engineering of room temperature-grown inorganic perovskite quantum dots for highly efficient inverted light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 42647–42656.

    Article  CAS  Google Scholar 

  46. Makarov, N. S.; Guo, S. J.; Isaienko, O.; Liu, W. Y.; Robel, I.; Klimov, V. I. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349–2362.

    Article  CAS  Google Scholar 

  47. Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46.

    Article  CAS  Google Scholar 

  48. Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683–3689.

    Article  CAS  Google Scholar 

  49. Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.

    Article  CAS  Google Scholar 

  50. Wang, Y.; Fullon, R.; Acerce, M.; Petoukhoff, C. E.; Yang, J.; Chen, C. G.; Du, S. N.; Lai, S. K.; Lau, S. P.; Voiry, D. et al. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv. Mater. 2017, 29, 1603995.

    Article  Google Scholar 

  51. Song, J. Z.; Li, J. H.; Xu, L. M.; Li, J. H.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11. 6% perovskite QLEDs. Adv. Mater. 2018, 30, 1800764.

    Article  Google Scholar 

  52. van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 2000, 104, 1715–1723.

    Article  CAS  Google Scholar 

  53. Jacobsson, T. J.; Edvinsson, T. A spectroelectrochemical method for locating fluorescence trap states in nanoparticles and quantum dots. J. Phys. Chem. C 2013, 117, 5497–5504.

    Article  CAS  Google Scholar 

  54. Moyen, E.; Kim, J. H.; Kim, J.; Jang, J. ZnO nanoparticles for quantum-dot-based light-emitting diodes. ACS Appl. Nano Mater. 2020, 3, 5203–5211.

    Article  CAS  Google Scholar 

  55. Park, S.; Kim, B. J.; Kim, T. Y.; Jung, E. Y.; Lee, K. M.; Hong, J. A.; Jeon, W.; Park, Y.; Kang, S. J. Improving the photodetection and stability of a visible-light QDs/ZnO phototransistor via an Al2O3 additional layer. J. Mater. Chem. C 2021, 9, 2550–2560.

    Article  CAS  Google Scholar 

  56. Ryu, B.; Noh, H. K.; Choi, E. A.; Chang, K. J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors. Appl. Phys. Lett. 2010, 97, 022108.

    Article  Google Scholar 

  57. Pattanasattayavong, P.; Rossbauer, S.; Thomas, S.; Labram, J. G.; Snaith, H. J.; Anthopoulos, T. D. Solution-processed dye-sensitized ZnO phototransistors with extremely high photoresponsivity. J. Appl. Phys. 2012, 112, 074507.

    Article  Google Scholar 

  58. Na, H. J.; Cho, N. K.; Park, J.; Lee, S. E.; Lee, E. G.; Im, C.; Kim, Y. S. A visible light detector based on a heterojunction phototransistor with a highly stable inorganic CsPbIxBr3−x perovskite and In-Ga-Zn-O semiconductor double-layer. J. Mater. Chem. C 2019, 7, 14223–14231.

    Article  CAS  Google Scholar 

  59. Hou, Y.; Wang, L. M.; Zou, X. M.; Wan, D.; Liu, C.; Li, G. L.; Liu, X. Q.; Liu, Y. F.; Jiang, C. Z.; Ho, J. C. et al. Substantially improving device performance of all-inorganic perovskite-based phototransistors via indium tin oxide nanowire incorporation. Small 2020, 16, 1905609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (No. 20011317), Development of an adhesive material capable of morphing more than 50% for flexible devices with a radius of curvature of 1 mm or less funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Moyen or Jin Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.M., Moyen, E., Saha, J.K. et al. Solution processed high performance perovskite quantum dots/ZnO phototransistors. Nano Res. 15, 3660–3666 (2022). https://doi.org/10.1007/s12274-021-3969-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3969-8

Keywords

Navigation