Skip to main content
Log in

Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Non-precious metal catalysts (NPMCs) are promising low-cost alternatives of Pt/C for oxygen reduction reaction (ORR), which however suffer from serious stability challenge in the devices of proton-exchange-membrane fuel cells (PEMFC). Different from the traditional strategies of increasing the degree of graphitization of carbon substrates and using less Fenton-reactive metals, we prove here that proper regulation of coordination anions is also an effective way to improve the stability of NPMC. N/P co-coordinated Fe-Co dual-atomic-sites are constructed on ZIF-8 derived carbon support using a molecular precursor of C34H28Cl2CoFeP2 and a “precursor-preselected” method. A composition of FeCoN5P1 is infered for the dual-atom active site by microscopy and spectroscopy analysis. By comparing with N-coordinated references, we investigate the effect of P-coodination on the ORR catalysis of Fe-Co dual-atom catalysts in PEMFC. The metals in FeCoN5P1 have the lower formation energy than those in the solo N-coordinated active sites of FeCoN6 and FeN4, and exhibits a much better fuel cell stability. This anion approach provides a new way to improve the stability of dual-atom catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotech. 2021, 16, 331–336.

    Article  CAS  Google Scholar 

  2. Wang, Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055–2066.

    Article  Google Scholar 

  3. Wang, L. Fe-N-C catalysts for PEMFC: Progress towards the commercial application under DOE reference. J. Energy Chem. 2019, 39, 77–87.

    Article  Google Scholar 

  4. Yang, C. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

    Article  CAS  Google Scholar 

  5. Sun, M. R.; Chen, C. L.; Wu, M. H.; Zhou, D. N.; Sun, Z. Y.; Fan, J. L.; Chen, W. X.; Li, Y. J. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3827-8.

  6. Sun, T. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  7. Li, J. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035–7039.

    Article  CAS  Google Scholar 

  8. Liu, Q. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2018, 57, 1204–1208.

    Article  CAS  Google Scholar 

  9. Wang, X. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

    Article  Google Scholar 

  10. Han, A. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  11. Chen, Y. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  12. Han, A. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

    Article  CAS  Google Scholar 

  13. Yang, J. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

    Article  CAS  Google Scholar 

  14. Chen, H. A facile route to fabricate double atom catalysts with controllable atomic spacing for the r-WGS reaction. J. Mater. Chem. A 2020, 8, 2364–2368.

    Article  CAS  Google Scholar 

  15. Wei, Y. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: A heteroatom modulator approach. Angew. Chem., Int. Ed. 2020, 59, 16013–16022.

    Article  CAS  Google Scholar 

  16. Yan, H. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070.

    Article  Google Scholar 

  17. Zhang, L. Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 2018, 140, 10757–10763.

    Article  CAS  Google Scholar 

  18. Ren, W. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

    Article  CAS  Google Scholar 

  19. Yu, D. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

    Article  CAS  Google Scholar 

  20. Zhang, W. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 33, 2102576.

    Article  CAS  Google Scholar 

  21. Chen, L. Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 4369–4375.

    Article  CAS  Google Scholar 

  22. Tong, M. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

    Article  CAS  Google Scholar 

  23. Xu, J. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  24. Liu, J. Hydrogen passivation of M-N-C (M = Fe, Co) catalysts for storage stability and ORR activity improvements. Adv. Mater. 2021, 33, 2103600.

    Article  CAS  Google Scholar 

  25. Wan, X. Stability of PGM-free fuel cell catalysts: Degradation mechanisms and mitigation strategies. Prog. Nat. Sci.: Mater. Int. 2020, 30, 721–731.

    Article  CAS  Google Scholar 

  26. Qiao, Z. 3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: A balance between graphitization and hierarchical porosity. Energy Environ. Sci. 2019, 12, 2830–2841.

    Article  CAS  Google Scholar 

  27. Gupta, S. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv. Energy Mater. 2016, 6, 1601198.

    Article  Google Scholar 

  28. Li, J. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    Article  CAS  Google Scholar 

  29. Xie, X. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

    Article  CAS  Google Scholar 

  30. Luo, E. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem., Int. Ed. 2019, 58, 12469–12475.

    Article  CAS  Google Scholar 

  31. Zhu, X. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.

    Article  CAS  Google Scholar 

  32. Liu, Q. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells. Adv. Energy Mater. 2020, 10, 2000689.

    Article  CAS  Google Scholar 

  33. Li, X. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  34. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3794-0.

  35. Li, J. Boosting the activity of Fe-Nx. moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. 2020, 63, 965–971.

    Article  CAS  Google Scholar 

  36. Li, Y. Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction. Appl. Catal. B: Environ. 2019, 249, 306–315.

    Article  CAS  Google Scholar 

  37. Zhu, X. P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 14732–14742.

    Article  CAS  Google Scholar 

  38. Wu, G. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

    Article  CAS  Google Scholar 

  39. Bai, L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

    Article  CAS  Google Scholar 

  40. Han, X. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

    Article  CAS  Google Scholar 

  41. Lu, Z. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

    Article  CAS  Google Scholar 

  42. Wang, J. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  43. Xiao, M. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering. J. Am. Chem. Soc. 2019, 141, 17763–17770.

    Article  CAS  Google Scholar 

  44. Wang, J. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 17, 3375–3379.

    Article  Google Scholar 

  45. Zhang, G. A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies. Energy Environ. Sci. 2019, 12, 1317–1325.

    Article  CAS  Google Scholar 

  46. Wang, K. Establishing structure/property relationships in atomically dispersed Co-Fe dual site M-Nx catalysts on microporous carbon for the oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 13044–13055.

    Article  CAS  Google Scholar 

  47. Tian, S. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353.

    Article  Google Scholar 

  48. Newville, M. IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 2001, 8, 322–324.

    Article  CAS  Google Scholar 

  49. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  50. Kresse, G. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  51. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  52. Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  53. Perdew, J. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  54. Kattel, S. Stability, electronic and magnetic properties of in-plane defects in graphene: A first-principles study. J. Phys. Chem. C 2012, 116, 8161–8166.

    Article  CAS  Google Scholar 

  55. Wan, X. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

    Article  CAS  Google Scholar 

  56. Ding, R. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

    Article  CAS  Google Scholar 

  57. Tang, W. Boosting electrocatalytic water splitting via metalmetalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

    Article  CAS  Google Scholar 

  58. Stakheev, A. Formation of small rhodium metal particles on the surface of a carbon support. Kinet. Catal. 2005, 46, 114–122.

    Article  CAS  Google Scholar 

  59. Liu, J. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

    Article  CAS  Google Scholar 

  60. Ye, W. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.

    Article  CAS  Google Scholar 

  61. Guo, S. Atomic-scaled cobalt encapsulated in P, N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media. Chem. Commun. 2017, 53, 9862–9865.

    Article  CAS  Google Scholar 

  62. Jin, H. P-Fe bond oxygen reduction catalysts toward high-efficiency metal-air batteries and fuel cells. J. Mater. Chem. A 2020, 8, 9121–9127.

    Article  CAS  Google Scholar 

  63. Yuan, K. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

    Article  CAS  Google Scholar 

  64. Chenitz, R. A specific demetalation of Fe-N4 catalytic sites in the micropores of NC_Ar + NH3 is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy Environ. Sci. 2018, 11, 365–382.

    Article  CAS  Google Scholar 

  65. Li, Y. Preparation of Fe-N-C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A 2019, 7, 26147–26153.

    Article  CAS  Google Scholar 

  66. Xue, L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun. 2018, 9, 3819.

    Article  Google Scholar 

  67. Li, Y. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.

    Article  CAS  Google Scholar 

  68. Xu, H. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    Article  CAS  Google Scholar 

  69. Hu, B. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Beijing Municipality (No. Z200012) and the National Natural Science Foundation of China (No. 21975010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglan Shui.

Electronic Supplementary Material

12274_2021_3966_MOESM1_ESM.pdf

Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wan, X., Liu, J. et al. Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res. 15, 3082–3089 (2022). https://doi.org/10.1007/s12274-021-3966-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3966-y

Keywords

Navigation