Skip to main content
Log in

THz trapped ion model and THz spectroscopy detection of potassium channels

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Advanced molecular dynamics (MD) simulation and infrared (IR) spectroscopy have been widely adopted to reveal the detailed dynamic process of high-speed selective permeability of potassium channels. Yet these MD simulations cannot avoid the choice of empirical molecular force fields and high transmembrane voltages (as driving electric fields for ions) far exceeding physiological levels. Moreover, the IR spectroscopy method usually requires isotope labels for carbonyl groups of the channels, which may change the original permeation process. Here, we build the terahertz (THz) trapped ion model for the selectivity filter (SF) of potassium channels KcsA based on the density functional theory (DFT) calculation of ion potentials. In this model, the zero-point energy of trapped ions and quantum tunneling effect provide the physical basis for near diffusion limited permeation rates of ions and explain the high driving electric field in MD simulations. Quantitative calculations of zero-point energy and tunneling probability show that the quantum effect assisted knock-on mechanism may help to realize the physiological functions of potassium channels. Furthermore, based on the trapped ion model, we calculated the ion decoherence timescale under the influence of protein environmental noise. We use the quantum optics method to describe the interaction between THz waves and the trapped ion. Then the novel THz spectroscopy approaches through the THz resonance fluorescence and the intense field non-resonant effect are presented theoretically. These are expected to be isotope label-free detective methods of the rapid ion permeation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flood, E.; Boiteux, C.; Lev, B.; Vorobyov, I.; Allen, T. W. Atomistic simulations of membrane ion channel conduction, gating, and modulation. Chem. Rev. 2019, 119, 7737–7832.

    Article  CAS  Google Scholar 

  2. Catterall, W. A.; Wisedchaisri, G.; Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017, 13, 455–463.

    Article  CAS  Google Scholar 

  3. Hamill, O. P.; Marty, A.; Neher, E.; Sakmann, B.; Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflcpgers Archiv 1981, 391, 85–100.

    Article  CAS  Google Scholar 

  4. Hodgkin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544.

    Article  CAS  Google Scholar 

  5. Hodgkin, A. L.; Katz, B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 1949, 108, 37–77.

    Article  CAS  Google Scholar 

  6. Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.

    Article  CAS  Google Scholar 

  7. MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem., Int. Ed. 2004, 43, 4265–4277.

    Article  CAS  Google Scholar 

  8. Zhou, Y. F.; MacKinnon, R. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 2003, 333, 965–975.

    Article  CAS  Google Scholar 

  9. Morais-Cabral, J. H.; Zhou, Y. F.; MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 2001, 414, 37–42.

    Article  CAS  Google Scholar 

  10. Aqvist, J.; Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 2000, 404, 881–884.

    Article  CAS  Google Scholar 

  11. Fayer, M. D. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy. Annu. Rev. Phys. Chem. 2009, 60, 21–38.

    Article  CAS  Google Scholar 

  12. Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465.

    Article  CAS  Google Scholar 

  13. Kopec, W.; Köpfer, D. A.; Vickery, O. N.; Bondarenko, A. S.; Jansen, T. L. C.; de Groot, B. L.; Zachariae, U. Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels. Nat. Chem. 2018, 10, 813–820.

    Article  CAS  Google Scholar 

  14. Köpfer, D. A.; Song, C.; Gruene, T.; Sheldrick, G. M.; Zachariae, U.; de Groot, B. L. Ion permeation in K+ channels occurs by direct Coulomb knock-on. Science 2014, 346, 352–355.

    Article  Google Scholar 

  15. Kratochvil, H. T.; Carr, J. K.; Matulef, K.; Annen, A. W.; Li, H.; Maj, M.; Ostmeyer, J.; Serrano, A. L.; Raghuraman, H.; Moran, S. D. et al. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 2016, 353, 1040–1044.

    Article  CAS  Google Scholar 

  16. DeMarco, K. R.; Bekker, S.; Vorobyov, I. Challenges and advances in atomistic simulations of potassium and sodium ion channel gating and permeation. J. Physiol. 2019, 597, 679–698.

    Article  CAS  Google Scholar 

  17. Jensen, M. Ø.; Jogini, V.; Eastwood, M. P.; Shaw, D. E. Atomic-level simulation of current-voltage relationships in single-file ion channels. J. Gen. Physiol. 2013, 141, 619–632.

    Article  CAS  Google Scholar 

  18. Lambert, N.; Chen, Y. N.; Cheng, Y. C.; Li, C. M.; Chen, G. Y.; Nori, F. Quantum biology. Nat. Phys. 2013, 9, 10–18.

    Article  CAS  Google Scholar 

  19. Romero, E.; Novoderezhkin, V. I.; van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017, 543, 355–365.

    Article  CAS  Google Scholar 

  20. Cha, Y.; Murray, C. J.; Klinman, J. P. Hydrogen tunneling in enzyme reactions. Science 1989, 243, 1325–1330.

    Article  CAS  Google Scholar 

  21. Balantekin, A. B.; Takigawa, N. Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 1998, 70, 77–100.

    Article  CAS  Google Scholar 

  22. Hopfield, J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc. Natl. Acad. Sci. USA 1974, 71, 3640–3644.

    Article  CAS  Google Scholar 

  23. Marcus, R. A. Electron transfer reactions in chemistry: Theory and experiment (Nobel Lecture). Angew. Chem., Int. Ed. 1993, 32, 1111–1121.

    Article  Google Scholar 

  24. Klinman, J. P.; Kohen, A. Hydrogen tunneling links protein dynamics to enzyme catalysis. Annu. Rev. Biochem. 2013, 8, 471–496.

    Article  Google Scholar 

  25. Kolesnikov, A. I.; Reiter, G. F.; Choudhury, N.; Prisk, T. R.; Mamontov, E.; Podlesnyak, A.; Ehlers, G.; Seel, A. G.; Wesolowski, D. J.; Anovitz, L. M. Quantum tunneling of water in beryl: A new state of the water molecule. Phys. Rev. Lett. 2016, 116, 167802.

    Article  Google Scholar 

  26. Arndt, M.; Nairz, O.; Vos-Andreae, J.; Keller, C.; van der Zouw, G.; Zeilinger, A. Wave-particle duality of C60 molecules. Nature 1999, 401, 680–682.

    Article  CAS  Google Scholar 

  27. Panitchayangkoon, G.; Hayes, D.; Fransted, K. A.; Caram, J. R.; Harel, E.; Wen, J. Z.; Blankenship, R. E.; Engel, G. S. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 2010, 107, 12766–12770.

    Article  CAS  Google Scholar 

  28. Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T. K.; Mančal, T.; Cheng, Y. C.; Blankenship, R. E.; Fleming, G. R. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 2007, 446, 782–786.

    Article  CAS  Google Scholar 

  29. Harush, E. Z.; Dubi, Y. Do photosynthetic complexes use quantum coherence to increase their efficiency? Probably not. Sci. Adv. 2021, 7, eabc4631.

    Article  CAS  Google Scholar 

  30. Ganim, Z.; Tokmakoff, A.; Vaziri, A. Vibrational excitons in ionophores: Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New J. Phys. 2011, 13, 113030.

    Article  Google Scholar 

  31. Vaziri, A.; Plenio, M. B. Quantum coherence in ion channels: Resonances, transport and verification. New J. Phys. 2010, 12, 085001.

    Article  Google Scholar 

  32. Summhammer, J.; Sulyok, G.; Bernroider, G. Quantum mechanical coherence of K+ ion wave packets increases conduction in the KcsA ion channel. Appl. Sci. 2020, 10, 4250.

    Article  CAS  Google Scholar 

  33. Summhammer, J.; Salari, V.; Bernroider, G. A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. J. Integr. Neurosci. 2012, 11, 123–135.

    Article  Google Scholar 

  34. Salari, V.; Moradi, N.; Sajadi, M.; Fazileh, F.; Shahbazi, F. Quantum decoherence time scales for ionic superposition states in ion channels. Phys. Rev. E 2015, 91, 032704.

    Article  CAS  Google Scholar 

  35. Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327.

    Article  Google Scholar 

  36. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78.

    Article  CAS  Google Scholar 

  37. Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124.

    Article  CAS  Google Scholar 

  38. Zhou, Y. F.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 2001, 414, 43–48.

    Article  CAS  Google Scholar 

  39. Wang, K. C.; Yang, L. X.; Wang, S. M.; Guo, L. H.; Ma, J. L.; Tang, J. C.; Bo, W. F.; Wu, Z.; Zeng, B. Q.; Gong, Y. B. Transient proton transfer of base pair hydrogen bonds induced by intense terahertz radiation. Phys. Chem. Chem. Phys. 2020, 22, 9316–9321.

    Article  CAS  Google Scholar 

  40. Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992, 97, 1990–2001.

    Article  CAS  Google Scholar 

  41. Vassell, M. O.; Lee, J.; Lockwood, H. F. Multibarrier tunneling in Ga1−xAlxAs/GaAs heterostructures. J. Appl. Phys. 1983, 54, 5206–5213.

    Article  CAS  Google Scholar 

  42. Jackson, J. D. Classical Electrodynamics; Wiley: New York, 1999.

    Google Scholar 

  43. Biggin, P. C.; Smith, G. R.; Shrivastava, I.; Choe, S.; Sansom, M. S. P. Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations. Biochim. Biophys. Acta (BBA)-Biomembr. 2001, 1510, 1–9.

    Article  CAS  Google Scholar 

  44. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

    Article  CAS  Google Scholar 

  45. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

    Article  CAS  Google Scholar 

  46. Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.

    Article  Google Scholar 

  47. Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324.

    Article  CAS  Google Scholar 

  48. Knapp, M. J.; Meyer, M.; Klinman, J. P. Nuclear tunneling in the condensed phase: Hydrogen transfer in enzyme reactions. In Hydrogen-Transfer Reactions. Hynes, J. T.; Klinman, J. P.; Limbach, H. H.; Schowen, R. L., Eds.; John Wiley & Sons, Ltd: Weinheim, 2007.

    Google Scholar 

  49. Diedrich, F.; Bergquist, J. C.; Itano, W. M.; Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 1989, 62, 403–406.

    Article  CAS  Google Scholar 

  50. Cirac, J. I.; Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 1995, 74, 4091–4094.

    Article  CAS  Google Scholar 

  51. Xiang, Z. X.; Tang, C. X.; Chang, C.; Liu, G. Z. A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: Signal characteristics. Sci. Bull. 2020, 65, 308–317.

    Article  CAS  Google Scholar 

  52. Liu, G. Z.; Chang, C.; Qiao, Z.; Wu, K. J.; Zhu, Z.; Cui, G. Q.; Peng, W. Y.; Tang, Y. Z.; Li, J.; Fan, C. H. Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater. 2019, 29, 1807862.

    Article  Google Scholar 

  53. Liu, G. Z. The conjectures on physical mechanism of vertebrate nervous system. Chin. Sci. Bull. 2018, 63, 3864–3865.

    Article  Google Scholar 

  54. Li, Y. M.; Chang, C.; Zhu, Z.; Sun, L.; Fan, C. H. Terahertz wave enhances permeability of the voltage-gated calcium channel. J. Am. Chem. Soc. 2021, 143, 4311–4318.

    Article  CAS  Google Scholar 

  55. Wu, K. J.; Qi, C. H.; Zhu, Z.; Wang, C. L.; Song, B.; Chang, C. Terahertz wave accelerates DNA unwinding: A molecular dynamics simulation study. J. Phys. Chem. Lett. 2020, 11, 7002–7008.

    Article  CAS  Google Scholar 

  56. Ficek, Z.; Wahiddin, M. R. Quantum Optics for Beginners; CRC Press: Boca Raton, 2014.

    Google Scholar 

  57. Kampfrath, T.; Tanaka, K.; Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 2013, 7, 680–690.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Jingchao Tang, Lianghao Guo, and Jialu Ma in the research group for critical comments. We also thank Haibo Jiang for the discussion about ion channels.

This work was supported by the National Natural Science Foundation of China (Nos. 61921002 and 61988102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaomeng Wang or Yubin Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, S., Yang, L. et al. THz trapped ion model and THz spectroscopy detection of potassium channels. Nano Res. 15, 3825–3833 (2022). https://doi.org/10.1007/s12274-021-3965-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3965-z

Keywords

Navigation