Skip to main content
Log in

A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) have been broadly investigated for energy storage systems. However, many COF-based anode materials suffer from low utilization of redox-active sites and sluggish ions/electrons transport caused by their densely stacked layers. Thus, it is still a great challenge to obtain COF-based anode materials with fast ions/electrons transport and thus superior rate performance. Herein, a redox-active piperazine-terephthalaldehyde (PA-TA) COF with ultra-large interlayer distance is designed and synthesized for high-rate anode material, which contains piperazine units adopting a chair-shaped conformation with the nonplanar linkages of a tetrahedral configuration. This unique structure renders PA-TA COF an ultra-large interlayer distance of 6.2 Å, and further enables it to achieve outstanding rate and cycling performance. With a high specific capacity of 543 mAh·g−1 even after 400 cycles at 1.0 A·g−1, it still could afford a specific capacity of 207 mAh·g−1 even at a high current density of 5.0 A·g−1. Our study indicates that expanding the interlayer distance of COFs by rational molecular design would be of great importance to develop high-rate electrode materials for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Article  CAS  Google Scholar 

  2. Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

    Article  CAS  Google Scholar 

  3. Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W. S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976.

    Article  CAS  Google Scholar 

  4. Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548.

    Article  CAS  Google Scholar 

  5. Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

    Article  CAS  Google Scholar 

  6. Aravindan, V.; Lee, Y. S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.

    Article  CAS  Google Scholar 

  7. Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 2018, 30, 1704682.

    Article  CAS  Google Scholar 

  8. Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.

    Article  CAS  Google Scholar 

  9. Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Polymer-based organic batteries. Chem. Rev. 2016, 116, 9438–9484.

    Article  CAS  Google Scholar 

  10. Zhao, Y.; Wu, M. M.; Chen, H. B.; Zhu, J.; Liu, J.; Ye, Z. T.; Zhang, Y.; Zhang, H. T.; Ma, Y. F.; Li, C. X. et al. Balance cathode-active and anode-active groups in one conjugated polymer towards highperformance all-organic lithium-ion batteries. Nano Energy 2021, 86, 106055.

    Article  CAS  Google Scholar 

  11. Wu, J. S.; Rui, X. H.; Wang, C. Y.; Pei, W. B.; Lau, R.; Yan, Q. Y.; Zhang, Q. C. Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high capacity. Adv. Energy Mater. 2015, 5, 1402189.

    Article  CAS  Google Scholar 

  12. Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem., Int. Ed. 2012, 51, 5147–5151.

    Article  CAS  Google Scholar 

  13. Wu, J. S.; Rui, X. H.; Long, G. K.; Chen, W. Q.; Yan, Q. Y.; Zhang, Q. C. Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem., Int. Ed. 2015, 54, 7354–7358.

    Article  CAS  Google Scholar 

  14. Lin, Z. Q.; Xie, J.; Zhang, B. W.; Li, J. W.; Weng, J. N.; Song, R. B.; Huang, X.; Zhang, H.; Li, H.; Liu, Y. et al. Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy 2017, 41, 117–127.

    Article  CAS  Google Scholar 

  15. Yao, C. J.; Wu, Z. Z.; Xie, J.; Yu, F.; Guo, W.; Xu, Z. J.; Li, D. S.; Zhang, S. Q.; Zhang, Q. C. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem. 2020, 13, 2457–2463.

    Article  CAS  Google Scholar 

  16. Lei, Z. D.; Chen, X. D.; Sun, W. W.; Zhang, Y.; Wang, Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 2019, 9, 1801010.

    Article  CAS  Google Scholar 

  17. Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A. M.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640.

    Article  CAS  Google Scholar 

  18. Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.

    Article  CAS  Google Scholar 

  19. Wu, M. M.; Zhao, Y.; Sun, B. Q.; Sun, Z. H.; Li, C. X.; Han, Y.; Xu, L. Q.; Ge, Z.; Ren, Y. X.; Zhang, M. T. et al. A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy 2020, 70, 104498.

    Article  CAS  Google Scholar 

  20. Xie, H. Y.; Hao, Q.; Jin, H. C.; Xie, S.; Sun, Z. W.; Ye, Y. D.; Zhang, C. H.; Wang, D.; Ji, H. X.; Wan, L. J. Redistribution of Liions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton board. Sci. China Chem. 2020, 63, 1306–1314.

    Article  CAS  Google Scholar 

  21. Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

    Article  CAS  Google Scholar 

  22. Kong, L. J.; Liu, M.; Huang, H.; Xu, Y. H.; Bu, X. H. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater., in press, DOI: https://doi.org/10.1002/aenm.202100172.

  23. Zhou, L. M.; Jo, S.; Park, M.; Fang, L.; Zhang, K.; Fan, Y. P.; Hao, Z. M.; Kang, Y. M. Structural engineering of covalent organic frameworks for rechargeable batteries. Adv. Energy Mater. 2021, 11, 2003054.

    Article  CAS  Google Scholar 

  24. Kandambeth, S.; Kale, V. S.; Shekhah, O.; Alshareef, H. N.; Eddaoudi, M. 2D covalent-organic framework electrodes for supercapacitors and rechargeable metal-ion batteries. Adv. Energy Mater., in press, DOI: https://doi.org/10.1002/aenm.202100177.

  25. Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

    Article  CAS  Google Scholar 

  26. Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 1904199.

    Article  CAS  Google Scholar 

  27. Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261.

    Article  CAS  Google Scholar 

  28. Jiang, S. Y.; Gan, S. X.; Zhang, X.; Li, H.; Qi, Q. Y.; Cui, F. Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 2019, 141, 14981–14986.

    Article  CAS  Google Scholar 

  29. Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

    Article  CAS  Google Scholar 

  30. Xu, S. Q.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W. B.; Zhuang, X. D.; Brunner, E.; Heine, T.; Berger, R. et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 849–853.

    Article  CAS  Google Scholar 

  31. Zhao, G. F.; Zhang, Y. H.; Gao, Z. H.; Li, H. N.; Liu, S. M.; Cai, S.; Yang, X. F.; Guo, H.; Sun, X. L. Dual active site of the azo and carbonyl-modified covalent organic framework for highperformance Li storage. ACS Energy Lett. 2020, 5, 1022–1031.

    Article  CAS  Google Scholar 

  32. Sun, R. M.; Hou, S.; Luo, C.; Ji, X.; Wang, L. N.; Mai, L. Q.; Wang, C. S. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett. 2020, 20, 3880–3888.

    Article  CAS  Google Scholar 

  33. Wang, G.; Chandrasekhar, N.; Biswal, B. P.; Becker, D.; Paasch, S.; Brunner, E.; Addicoat, M.; Yu, M. H.; Berger, R.; Feng, X. L. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage. Adv. Mater. 2019, 31, 1901478.

    Article  CAS  Google Scholar 

  34. Wang, Y. R.; Liu, Z. T.; Wang, C. X.; Hu, Y.; Lin, H. N.; Kong, W. H.; Ma, J.; Jin, Z. π-Conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries. Energy Storage Mater. 2020, 26, 494–502.

    Article  Google Scholar 

  35. Wu, C. G.; Hu, M. J.; Yan, X. R.; Shan, G. C.; Liu, J. Z.; Yang, J. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Storage Mater. 2021, 36, 347–354.

    Article  Google Scholar 

  36. Han, C. P.; Tong, J.; Tang, X.; Zhou, D.; Duan, H.; Li, B. H.; Wang, G. X. Boost anion storage capacity using conductive polymer as a pseudocapacitive cathode for high-energy and flexible lithium ion capacitors. ACS Appl. Mater. Interfaces 2020, 12, 10479–10489.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Ministry of Science and Technology of China (No. 52090034), the National Natural Science Foundation of China (No. 51633002), and Higher Education Discipline Innovation Project (No. B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen.

Electronic Supplementary Material

12274_2021_3950_MOESM1_ESM.pdf

A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhao, Y., Zhang, H. et al. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 15, 9779–9784 (2022). https://doi.org/10.1007/s12274-021-3950-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3950-6

Keywords

Navigation