Skip to main content
Log in

Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Size reduction can generally enhance the surface reactivity of inorganic nanomaterials. The origin of this nano-effect has been ascribed to ultrasmall size, large specific surface area, or abundant defects, but the most intrinsic electronic-level principles are still not fully understood yet. By combining experimental explorations and mathematical modeling, herein we propose an electronic-level model to reveal the physicochemical nature of size-dependent nanomaterial surface reactivity. Experimentally, we reveal that competitive redistribution of surface atomic orbitals from extended energy band states into localized surface chemical bonds is the critical electronic process of surface chemical interactions, using H2O2-TiO2 chemisorption as a model reaction. Theoretically, we define a concept, orbital potential (G), to describe the electronic feature determining the tendency of orbital redistribution, and deduce a mathematical model to reveal how size modulates surface reactivity. We expose the dual roles of size reduction in enhancing nanomaterial surface reactivity—inversely correlating to orbital potential and amplifying the effects of other structural factors on surface reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaden, W. E.; Wu, T. P.; Kunkel, W. A.; Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 2009, 326, 826–829.

    Article  CAS  Google Scholar 

  2. Sun, Y. F.; Lei, F. C.; Gao, S.; Pan, B. C.; Zhou, J. F.; Xie, Y. Atomically thin tin dioxide sheets for efficient catalytic oxidation of carbon monoxide. Angew. Chem., Int. Ed. 2013, 52, 10569–10572.

    Article  CAS  Google Scholar 

  3. Campbell, C. T.; Parker, S. C.; Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 2002, 298, 811–814.

    Article  CAS  Google Scholar 

  4. Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

    Article  CAS  Google Scholar 

  5. Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M. Industrial applications of gold catalysis. Angew. Chem., Int. Ed. 2016, 55, 14210–14217.

    Article  CAS  Google Scholar 

  6. Shao, M. H.; Peles, A.; Shoemaker, K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011, 11, 3714–3719.

    Article  CAS  Google Scholar 

  7. Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

    Article  Google Scholar 

  8. Kelly, J. A.; Shukaliak, A. M.; Fleischauer, M. D.; Veinot, J. G. C. Size-dependent reactivity in hydrosilylation of silicon nanocrystals. J. Am. Chem. Soc. 2011, 133, 9564–9571.

    Article  CAS  Google Scholar 

  9. Hvolbæk, B.; Janssens, T. V. W.; Clausen, B. S.; Falsig, H.; Christensen, C. H.; Nørskov, J. K. Catalytic activity of Au nanoparticles. Nano Today 2007, 2, 14–18.

    Article  Google Scholar 

  10. Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673–1681.

    Article  CAS  Google Scholar 

  11. Yang, F.; Deng, D. H.; Pan, X. L.; Fu, Q.; Bao, X. H. Understanding nano effects in catalysis. Natl. Sci. Rev. 2015, 2, 183–201.

    Article  CAS  Google Scholar 

  12. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  13. Li, L.; Larsen, A. H.; Romero, N. A.; Morozov, V. A.; Glinsvad, C.; Abild-Pedersen, F.; Greeley, J.; Jacobsen, K. W.; Nørskov, J. K. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 2013, 4, 222–226.

    Article  CAS  Google Scholar 

  14. Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 2004, 223, 232–235.

    Article  CAS  Google Scholar 

  15. Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater. 2012, 11, 49–52.

    Article  Google Scholar 

  16. Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N. et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

    Article  CAS  Google Scholar 

  17. Calle-Vallejo, F.; Tymoczko, J.; Colic, V.; Vu, Q. H.; Pohl, M. D.; Morgenstern, K.; Loffreda, D.; Sautet, P.; Schuhmann, W.; Bandarenka, A. S. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185–189.

    Article  CAS  Google Scholar 

  18. Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

    Article  CAS  Google Scholar 

  19. Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

    Article  Google Scholar 

  20. Anderson, R. M.; Yancey, D. F.; Zhang, L.; Chill, S. T.; Henkelman, G.; Crooks, R. M. A Theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. Acc. Chem. Res. 2015, 48, 1351–1357.

    Article  CAS  Google Scholar 

  21. Tao, H. B.; Fang, L. W.; Chen, J. Z.; Yang, H. B.; Gao, J. J.; Miao, J. W.; Chen, S. L.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978–9985.

    Article  CAS  Google Scholar 

  22. Gorzkowski, M. T.; Lewera, A. Probing the limits of d-band center theory: Electronic and electrocatalytic properties of Pd-Shell-Pt-core nanoparticles. J. Phys. Chem. C 2015, 119, 18389–18395.

    Article  CAS  Google Scholar 

  23. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

    Article  CAS  Google Scholar 

  24. Bhalkikar, A.; Wu, T. S.; Fisher, T. J.; Sarella, A.; Zhang, D. W.; Gao, Y.; Soo, Y. L.; Cheung, C. L. Tunable catalytic activity of gadolinium-doped ceria nanoparticles for pro-oxidation of hydrogen peroxide. Nano Res. 2020, 13, 2384–2392.

    Article  CAS  Google Scholar 

  25. Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis — Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    CAS  Google Scholar 

  26. Xiang, G.; Tang, Y.; Liu, Z.; Zhu, W.; Liu, H.; Wang, J.; Zhong, G.; Li, J.; Wang, X. Probing ligand-induced cooperative orbital redistribution that dominates nanoscale molecule-surface interactions with one-unit-thin TiO2 nanosheets. Nano Lett. 2018, 18, 7809–7815.

    Article  CAS  Google Scholar 

  27. Viñes, F.; Gomes, J. R. B.; Illas, F. Understanding the reactivity of metallic nanoparticles: Beyond the extended surface model for catalysis. Chem. Soc. Rev. 2014, 43, 4922–4939.

    Article  Google Scholar 

  28. Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

    Article  Google Scholar 

  29. Latimer, A. A.; Kulkarni, A. R.; Aljama, H.; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; Nørskov, J. K. Understanding trends in C-H bond activation in heterogeneous catalysis. Nat. Mater. 2017, 16, 225–229.

    Article  CAS  Google Scholar 

  30. Hammer, B.; Norskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

    Article  CAS  Google Scholar 

  31. Kleis, J.; Greeley, J.; Romero, N. A.; Morozov, V. A.; Falsig, H.; Larsen, A. H.; Lu, J.; Mortensen, J. J.; Dulak, M.; Thygesen, K. S. et al. Finite size effects in chemical bonding: From small clusters to solids. Catal. Lett. 2011, 141, 1067–1071.

    Article  CAS  Google Scholar 

  32. Hammer, B.; Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220.

    Article  CAS  Google Scholar 

  33. Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; de Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

    Article  CAS  Google Scholar 

  34. Zhao, W. J.; Huang, Y.; Shen, C.; Li, C.; Cai, Y. Q.; Xu, Y.; Rong, H. T.; Gao, Q.; Wang, Y.; Zhao, L. et al. Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer. Nano Res. 2019, 12, 3095–3100.

    Article  CAS  Google Scholar 

  35. Xiang, G. L.; Wang, Y. G.; Wu, D.; Li, T. Y.; He, J.; Li, J.; Wang, X. Size-dependent surface activity of rutile and anatase TiO2 nanocrystals: Facile surface modification and enhanced photocatalytic performance. Chem.—Eur. J. 2012, 18, 4759–4765.

    Article  CAS  Google Scholar 

  36. Xiang, G. L.; Li, T. Y.; Zhuang, J.; Wang, X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010, 46, 6801–6803.

    Article  CAS  Google Scholar 

  37. Wu, Z. J.; Guo, K.; Cao, S.; Yao, W. Q.; Piao, L. Y. Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Res. 2020, 13, 551–556.

    Article  CAS  Google Scholar 

  38. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  Google Scholar 

  39. Xiang, G. L.; Wu, D.; He, J.; Wang, X. Acquired pH-responsive and reversible enrichment of organic dyes by peroxide modified ultrathin TiO2 nanosheets. Chem. Commun. 2011, 47, 11456–11458.

    Article  CAS  Google Scholar 

  40. Ertl, G. Reactions at Solid Surfaces; John Wiley & Sons: Hoboken, NJ, 2009.

    Book  Google Scholar 

  41. Kapilashrami, M.; Zhang, Y. F.; Liu, Y. S.; Hagfeldt, A.; Guo, J. H. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 2014, 114, 9662–9707.

    Article  CAS  Google Scholar 

  42. Grunes, L. A.; Leapman, R. D.; Wilker, C. N.; Hoffmann, R.; Kunz, A. B. Oxygen K near-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected 3d transition-metal oxides. Phys. Rev. B 1982, 25, 7157–7173.

    Article  CAS  Google Scholar 

  43. Chakhalian, J.; Freeland, J. W.; Habermeier, H. U.; Cristiani, G.; Khaliullin, G.; van Veenendaal, M.; Keimer, B. Orbital reconstruction and covalent bonding at an oxide interface. Science 2007, 318, 1114–1117.

    Article  CAS  Google Scholar 

  44. Qi, W. H. Nanoscopic thermodynamics. Acc Chem. Res. 2016, 49, 1587–1595.

    Article  CAS  Google Scholar 

  45. Wang, L. Z.; Sasaki, T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455–9486.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21801012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolei Xiang.

Electronic supplementary material

12274_2021_3910_MOESM1_ESM.pdf

Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, G., Wang, YG. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling. Nano Res. 15, 3812–3817 (2022). https://doi.org/10.1007/s12274-021-3910-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3910-1

Keywords

Navigation