Skip to main content
Log in

Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

P2-type layered Na0.67MnO2 has been considered to be a promising candidate cathode material for sodium ion batteries. Nevertheless, the undesired phase transitions during operation and the large Na+ radius induced sluggish ion diffusion remain the stumbling blocks to realize its high performance. Herein, we propose a Zn/Mg co-doping strategy, which is proved to have bifunctional effects. First, relative to the pristine P2-Na0.67MnO2 and the single-ion (Zn/Mg) doped samples, the Zn/Mg dual-doped P2-Na0.67MnO2 demonstrates a lower Mn3+/Mn4+ ratio and a higher lattice O content, which facilitate the structural stability of the cathode material. More intriguingly, the Zn/Mg co-doping gives rise to enlarged interplanar spacing, which provides spacious ion diffusion channels for fast Na+ intercalation/extraction. As a result, the Zn/Mg dual-doped sample exhibits a high Na+ diffusion coefficient and a solid-solution reaction during charge/discharge, with a cell volume change determined to be only 0.55%. Taking advantages of the above favorable features, the Zn/Mg dual-doped P2-Na0.67MnO2 demonstrates a high rate performance with 67.2 mAh·g−1 delivered at 10 C and a decent cycling stability with a capacity retention of 93.8% achieved at 1 C after 100 cycles. This work introduces the Zn/Mg co-doping strategy to simultaneously improve the cycling stability and rate capability of P2-Na0.67MnO2, which may offer a promising avenue for further performance enhancement of the layered Na-ion batteries cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  CAS  Google Scholar 

  2. Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.

    Article  CAS  Google Scholar 

  3. Ma, G.; Li, S.; Zhang, W. X.; Yang, Z. H.; Liu, S. L.; Fan, X. M.; Chen, F.; Tian, Y.; Zhang, W. B.; Yang, S. H. et al. A general and mild approach to controllable preparation of manganese-based micro- and nanostructured bars for high performance lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 3667–3671.

    Article  CAS  Google Scholar 

  4. Heubner, C.; Lein, T.; Schneider, M.; Michaelis, A. Intercalation materials for secondary batteries based on alkali metal exchange: Developments and perspectives. J. Mater. Chem. A 2020, 8, 16854–16883.

    Article  CAS  Google Scholar 

  5. Huang, H. J.; Kundu, D. P.; Yan, R. Y.; Tervoort, E.; Chen, X.; Pan, L.; Oschatz, M.; Antonietti, M.; Niederberger, M. Fast Na-ion intercalation in zinc vanadate for high-performance Na-ion hybrid capacitor. Adv. Energy Mater. 2018, 8, 1802800.

    Article  CAS  Google Scholar 

  6. Zhao, C. L.; Wang, Q. D.; Yao, Z. P.; Wang, J. L.; Sánchez-Lengeling, B.; Ding, F. X.; Qi, X. G.; Lu, Y. X.; Bai, X. D.; Li, B. H. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711.

    Article  CAS  Google Scholar 

  7. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.

    Article  CAS  Google Scholar 

  8. Fu, J. R.; Huang, H. J.; Shi, K.; Chen, F.; Yang, Z. H.; Zhang, W. X. Al-doped walnut-shell-like P2-type Na2/3Ni1/3Co(1/3−x)Mn1/3AlxO2 as advanced sodium ion battery cathode materials with enhanced rate and cycling performance. Electrochim. Acta 2020, 349, 136347.

    Article  CAS  Google Scholar 

  9. Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.

    Article  CAS  Google Scholar 

  10. Mukhopadhyay, A.; Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 2014, 63, 58–116.

    Article  CAS  Google Scholar 

  11. Wang, Y. X.; Wang, L. G.; Zhu, H.; Chu, J.; Fang, Y. J.; Wu, L. N.; Huang, L.; Ren, Y.; Sun, C. J.; Liu, Q. et al. Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage. Adv. Funct. Mater. 2020, 30, 1910327.

    Article  CAS  Google Scholar 

  12. Liu, X. S.; Zuo, W. H.; Zheng, B. Z.; Xiang, Y. X.; Zhou, K.; Xiao, Z. M.; Shan, P. Z.; Shi, J. W.; Li, Q.; Zhong, G. M. et al. P2-Na0.67AlxMn1−xO2: Cost-effective, stable and high-rate sodium electrodes by suppressing phase transitions and enhancing sodium cation mobility. Angew. Chem., Int. Ed. 2019, 58, 18086–18095.

    Article  CAS  Google Scholar 

  13. Kong, W. J.; Gao, R.; Li, Q. Y.; Yang, W. Y.; Yang, J. B.; Sun, L. M.; Liu, X. F. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg Co-doping. J. Mater. Chem. A 2019, 7, 9099–9109.

    Article  CAS  Google Scholar 

  14. Bai, X.; Sathiya, M.; Mendoza-Sánchez, B.; Iadecola, A.; Vergnet, J.; Dedryvère, R.; Saubanère, M.; Abakumov, A. M.; Rozier, P.; Tarascon, J. M. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23). Adv. Energy Mater. 2018, 8, 1802379.

    Article  CAS  Google Scholar 

  15. Luo, C.; Langrock, A.; Fan, X. L.; Liang, Y. J.; Wang, C. S. P2-type transition metal oxides for high performance Na-ion battery cathodes. J. Mater. Chem. A 2017, 5, 18214–18220.

    Article  CAS  Google Scholar 

  16. Zuo, W. H.; Qiu, J. M.; Liu, X. S.; Zheng, B. Z.; Zhao, Y.; Li, J. L.; He, H. J.; Zhou, K.; Xiao, Z. M.; Li, Q. et al. Highly-stable P2-Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering. Energy Storage Mater. 2020, 26, 503–512.

    Article  Google Scholar 

  17. Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C, 1980, 99, 81–85.

    Article  CAS  Google Scholar 

  18. Kumakura, S.; Tahara, Y.; Sato, S.; Kubota, K.; Komaba, S. P′2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between orthorhombic distortion and electrochemical property. Chem. Mater. 2017, 29, 8958–8962.

    Article  CAS  Google Scholar 

  19. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  CAS  Google Scholar 

  20. Chen, M. Z.; Xiao, J.; Hua, W. B.; Hu, Z.; Wang, W. L.; Gu, Q. F.; Tang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. A cation and anion dual doping strategy for the elevation of titanium redox potential for high-power sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 12076–12083.

    Article  CAS  Google Scholar 

  21. Billaud, J.; Singh, G.; Armstrong, A. R.; Gonzalo, E.; Roddatis, V.; Armand, M.; Rojo, T.; Bruce, P. G. Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): A high capacity cathode for sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1387–1391.

    Article  CAS  Google Scholar 

  22. Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-Type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851–16855.

    Article  CAS  Google Scholar 

  23. Sharma, N.; Tapia-Ruiz, N.; Singh, G.; Armstrong, A. R.; Pramudita, J. C.; Brand, H. E. A.; Billaud, J.; Bruce, P. G.; Rojo, T. Rate dependent performance related to crystal structure evolution of Na0.67Mn0.8Mg0.2O2 in a sodium-ion battery. Chem. Mater. 2015, 27, 6976–6986.

    Article  CAS  Google Scholar 

  24. Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.

    Article  CAS  Google Scholar 

  25. Clément, R. J.; Billaud, J.; Robert Armstrong, A.; Singh, G.; Rojo, T.; Bruce, P. G.; Grey, C. P. Structurally stable Mg-doped P2-Na2/3Mn1−yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies. Energy Environ. Sci. 2016, 9, 3240–3251.

    Article  CAS  Google Scholar 

  26. Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Adv. Energy Mater. 2014, 4, 1301453.

    Article  CAS  Google Scholar 

  27. Anani, A.; Huggins, R. A. Multinary alloy electrodes for solid state batteries I. A phase diagram approach for the selection and storage properties determination of candidate electrode materials. J. Power Sources 1992, 38, 351–362.

    Article  CAS  Google Scholar 

  28. Xu, X.; Huo, H.; Jian, J. Y.; Wang, L. G.; Zhu, H.; Xu, S.; He, X. S.; Yin, G. P.; Du, C. Y.; Sun, X. L. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1803963.

    Article  CAS  Google Scholar 

  29. Huang, H. J.; Wang, X.; Tervoort, E.; Zeng, G. B.; Liu, T.; Chen, X.; Sologubenko, A.; Niederberger, M. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano 2018, 12, 2753–2763.

    Article  CAS  Google Scholar 

  30. Yoon, S.; Hwang, I.; Lee, C. W.; Ko, H. S.; Han, K. H. Power capability analysis in lithium ion batteries using electrochemical impedance spectroscopy. J. Electroanal. Chem. 2011, 655, 32–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports from the National Natural Science Foundation of China (NSFC) (Nos. 91834301, 91534102, and 21808046) and Anhui Provincial Science and Technology Department Foundation (No. 201903a05020021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haijian Huang or Weixin Zhang.

Electronic Supplementary Material

12274_2021_3715_MOESM1_ESM.pdf

Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, D., Huang, H. et al. Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries. Nano Res. 14, 3531–3537 (2021). https://doi.org/10.1007/s12274-021-3715-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3715-2

Keywords

Navigation