Skip to main content
Log in

Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible power sources featuring high-performance, prominent flexibility and raised safety have received mounting attention in the area of wearable electronic devices. However, many great challenges remain to be overcome, notably the design and fabrication of flexible electrodes with excellent electrochemical performance and matching them with safe and reliable electrolytes. Herein, a facile approach for preparing flexible electrodes, which employs carbon cloth derived from commercial cotton cloth as the substrate of cathode and a flexible anode, is proposed and investigated. The promising cathode (NVPOF@FCC) with high conductivity and outstanding flexibility is prepared by efficiently coating Na3V2(PO4)2O2F (NVPOF) on flexible carbon cloth (FCC), which exhibits remarkable electrochemical performance and the significantly improved reaction kinetics. More importantly, a novel flexible quasi-solid-state sodium-ion full battery (QSFB) is feasibly assembled by sandwiching a P(VDF-HFP)-NaClO4 gel-polymer electrolyte film between the advanced NVPOF@FCC cathode and FCC anode. And the QSFBs are further evaluated in flexible pouch cells, which not only demonstrates excellent energy-storage performance in aspect of great cycling stability and high-rate capability, but also impressive flexibility and safety. This work offers a feasible and effective strategy for the design of flexible electrodes, paving the way for the progression of practical and sustainable flexible batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

    Google Scholar 

  2. Mishra, K.; Yadav, N.; Hashmi, S. A. Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. J. Mater. Chem. A 2020, 8, 22507–22543.

    CAS  Google Scholar 

  3. Nishide, H.; Oyaizu, K. Toward flexible batteries. Science 2008, 319, 737–738.

    CAS  Google Scholar 

  4. Dai, C. L.; Sun, G. Q.; Hu, L. Y.; Xiao, Y. K.; Zhang, Z. P.; Qu, L. T. Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2020, 2, 509–526.

    CAS  Google Scholar 

  5. Guo, J. Z.; Gu, Z. Y.; Zhao, X. X.; Wang, M. Y.; Yang, X.; Yang, Y.; Li, W. H.; Wu, X. L. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode. Adv. Energy Mater. 2019, 9, 1902056.

    CAS  Google Scholar 

  6. Zhou, D.; Yang, T. T.; Yang, J. Q.; Fan, L. Z. A flexible self-charging sodium-ion full battery for self-powered wearable electronics. J. Mater. Chem. A 2020, 8, 13267–13276.

    CAS  Google Scholar 

  7. Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989.

    Google Scholar 

  8. Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    CAS  Google Scholar 

  9. Zhao, C. L.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. Flexible Na batteries. InfoMat 2020, 2, 126–138.

    CAS  Google Scholar 

  10. Qiu, R. Y.; Fei, R. X.; Guo, J. Z.; Wang, R.; He, B. B.; Gong, Y. S.; Wu, X. L.; Wang, H. W. Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge. J. Power Sources 2020, 466, 228249.

    CAS  Google Scholar 

  11. Wang, C.; Wang, X. F.; Lin, C. F.; Zhao, X. S. Spherical vanadium phosphate particles grown on carbon fiber cloth as flexible anode for high-rate Li-ion batteries. Chem. Eng. J. 2020, 386, 123981.

    CAS  Google Scholar 

  12. Ni, Q.; Bai, Y.; Guo, S. N.; Ren, H. X.; Chen, G. H.; Wang, Z. H.; Wu, F.; Wu, C. Carbon nanofiber elastically confined nanoflowers: A highly efficient design for molybdenum disulfide-based flexible anodes toward fast sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 5183–5192.

    CAS  Google Scholar 

  13. Shi, H. M.; Wen, G. L.; Nie, Y.; Zhang, G. H.; Duan, H. G. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale 2020, 12, 5261–5285.

    CAS  Google Scholar 

  14. Zhao, Y. F.; Guo, J. C. Development of flexible Li-ion batteries for flexible electronics. InfoMat 2020, 2, 866–878.

    CAS  Google Scholar 

  15. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    CAS  Google Scholar 

  16. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    CAS  Google Scholar 

  17. Dou, B. T.; Yan, J.; Chen, Q.; Han, X. G.; Feng, Q. M.; Miao, X. M.; Wang, P. Development of an innovative nitrite sensing platform based on the construction of carbon-layer-coated In2O3 porous tubes. Sens. Actuators B: Chem. 2021, 328, 129082.

    CAS  Google Scholar 

  18. Zhang, M.; Qiu, Y. F.; Han, Y.; Guo, Y.; Cheng, F. L. Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries. J. Power Sources 2016, 322, 163–168.

    CAS  Google Scholar 

  19. Li, S. T.; Liu, G.; Liu, J.; Lu, Y. K.; Yang, Q.; Yang, L. Y.; Yang, H. R.; Liu, S. L.; Lei, M.; Han, M. Carbon fiber cloth@VO2 (B): Excellent binder-free flexible electrodes with ultrahigh mass-loading. J. Mater. Chem. A 2016, 4, 6426–6432.

    CAS  Google Scholar 

  20. Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.

    Google Scholar 

  21. Guo, D. L.; Qin, J. W.; Yin, Z. G.; Bai, J. M.; Sun, Y. K.; Cao, M. H. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 2018, 45, 136–147.

    CAS  Google Scholar 

  22. Zhou, Y.; Wang, Z.; Lu, Y. C. Flexible aqueous lithium-ion batteries with ultrahigh areal capacity and long cycle life. Mater. Today Energy 2021, 19, 100570.

    CAS  Google Scholar 

  23. Verdier, N.; Foran, G.; Lepage, D.; Prébé, A.; Aymé-Perrot, D.; Dollé, M. Challenges in solvent-free methods for manufacturing electrodes and electrolytes for lithium-based batteries. Polymers 2021, 13, 323.

    CAS  Google Scholar 

  24. Liang, H. J.; Hou, B. H.; Li, W. H.; Ning, Q. L.; Yang, X.; Gu, Z. Y.; Nie, X. J.; Wang, G.; Wu, X. L. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ. Sci. 2019, 12, 3575–3584.

    CAS  Google Scholar 

  25. Guo, J. Z.; Yang, Y.; Liu, D. S.; Wu, X. L.; Hou, B. H.; Pang, W. L.; Huang, K. C.; Zhang, J. P.; Su, Z. M. A practicable Li/Na-ion hybrid full battery assembled by a high-voltage cathode and commercial graphite anode: Superior energy storage performance and working mechanism. Adv. Energy Mater. 2018, 8, 1702504.

    Google Scholar 

  26. Zhao, C. D.; Guo, J. Z.; Gu, Z. Y.; Zhao, X. X.; Li, W. H.; Yang, X.; Liang, H. J.; Wu, X. L. Robust three-dimensional carbon conductive network in a NaVPO4F cathode used for superior high-rate and ultralong-lifespan sodium-ion full batteries. J. Mater. Chem. A 2020, 8, 17454–17462.

    CAS  Google Scholar 

  27. Gu, Z. Y.; Sun, Z. H.; Guo, J. Z.; Zhao, X. X.; Zhao, C. D.; Li, S. F.; Wang, X. T.; Li, W. H.; Heng, Y. L.; Wu, X. L. High-rate and long-cycle cathode for sodium-ion batteries: Enhanced electrode stability and kinetics via binder adjustment. ACS Appl. Mater. Interfaces 2020, 12, 47580–47589.

    CAS  Google Scholar 

  28. Guo, J. Z.; Wang, P. F.; Wu, X. L.; Zhang, X. H.; Yan, Q. Y.; Chen, H.; Zhang, J. P.; Guo, Y. G. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance. Adv. Mater. 2017, 29, 1701968.

    Google Scholar 

  29. Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; Zhao, X. X.; Li, W. H.; Yang, X.; Liang, H. J.; Zhao, C. D.; Wu, X. L. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. 2020, 65, 702–710.

    CAS  Google Scholar 

  30. Hammami, A.; Raymond, N.; Armand, M. Runaway risk of forming toxic compounds. Nature 2003, 424, 635–636.

    CAS  Google Scholar 

  31. Gao, Y. S.; Chen, G. H.; Wang, X. R.; Yang, H. Y.; Wang, Z. H.; Lin, W. R.; Xu, H. J.; Bai, Y.; Wu, C. PY13FSI-infiltrated SBA-15 as nonflammable and high ion-conductive ionogel electrolytes for quasi-solid-state sodium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 22981–22991.

    CAS  Google Scholar 

  32. Chen, G. H.; Zhang, K.; Liu, Y. R.; Ye, L.; Gao, Y. S.; Lin, W. R.; Xu, H. J.; Wang, X. R.; Bai, Y.; Wu, C. Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries. Chem. Eng. J. 2020, 401, 126065.

    CAS  Google Scholar 

  33. Harris, K. D.; Elias, A. L.; Chung, H. J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771–2805.

    CAS  Google Scholar 

  34. Chen, G. H.; Ye, L.; Zhang, K.; Gao, M.; Lu, H.; Xu, H. J.; Bai, Y.; Wu, C. Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries. Chem. Eng. J. 2020, 394, 124885.

    CAS  Google Scholar 

  35. Chen, G. H.; Bai, Y.; Gao, Y. S.; Wang, Z. H.; Zhang, K.; Ni, Q.; Wu, F.; Xu, H. J.; Wu, C. Inhibition of crystallization of poly(ethylene oxide) by ionic liquid: insight into plasticizing mechanism and application for solid-state sodium ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 43252–43260.

    CAS  Google Scholar 

  36. Wang, F. X.; Wang, X. W.; Chang, Z.; Wu, X. W.; Liu, X.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Huang, W. A quasi-solid-state sodium-ion capacitor with high energy density. Adv. Mater. 2015, 27, 6962–6968.

    CAS  Google Scholar 

  37. Guo, J. Z.; Yang, A. B.; Gu, Z. Y.; Wu, X. L.; Pang, W. L.; Ning, Q. L.; Li, W. H.; Zhang, J. P.; Su, Z. M. Quasi-solid-state sodium-ion full battery with high-power/energy densities. ACS Appl. Mater. Interfaces 2018, 10, 17903–17910.

    CAS  Google Scholar 

  38. Xu, D. M.; Chao, D. L.; Wang, H. W.; Gong, Y. S.; Wang, R.; He, B. B.; Hu, X. L.; Fan, H. J. Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor. Adv. Energy Mater. 2018, 8, 1702769.

    Google Scholar 

  39. Zhao, X. X.; Gu, Z. Y.; Li, W. H.; Yang, X.; Guo, J. Z.; Wu, X. L. Temperature-dependent electrochemical properties and electrode kinetics of Na3V2(PO4)2O2F cathode for sodium-ion batteries with high energy density. Chem. -Eur. J. 2020, 26, 7823–7830.

    CAS  Google Scholar 

  40. Suarez-Hernandez, R.; Ramos-Sánchez, G.; Santos-Mendoza, I. O.; Guzmán-González, G.; González, I. A graphical approach for identifying the limiting processes in lithium-ion battery cathode using electrochemical impedance spectroscopy. J. Electrochem. Soc. 2020, 167, 100529.

    CAS  Google Scholar 

  41. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    CAS  Google Scholar 

  42. Wang, B.; Cheng, Y. F.; Su, H.; Cheng, M.; Li, Y.; Geng, H. B.; Dai, Z. F. Boosting transport kinetics of cobalt sulfides yolk-shell spheres by anion doping for advanced lithium and sodium storage. ChemSusChem 2020, 13, 4078–4085.

    CAS  Google Scholar 

  43. Tang, K.; Yu, X. Q.; Sun, J. P.; Li, H.; Huang, X. J. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 2011, 56, 4869–4875.

    CAS  Google Scholar 

  44. Kumar, V. K.; Ghosh, S.; Biswas, S.; Martha, S. K. Practical realization of O3-type NaNi0.5Mn0.3Co0.2O2 cathodes for sodium-ion batteries. J. Electrochem. Soc. 2020, 167, 080531.

    CAS  Google Scholar 

  45. Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

    CAS  Google Scholar 

  46. Hwang, J. Y.; Myung, S. T.; Choi, J. U.; Yoon, C. S.; Yashiro, H.; Sun, Y. K. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J. Mater. Chem. A 2017, 5, 23671–23680.

    CAS  Google Scholar 

  47. Hwang, J. Y.; Yu, T. Y.; Sun, Y. K. Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0.5]O2 cathode: Facile and customizable approach to high-voltage sodium-ion batteries. J. Mater. Chem. A 2018, 6, 16854–16862.

    CAS  Google Scholar 

  48. Wang, W. L.; Gang, Y.; Hu, Z.; Yan, Z. C.; Li, W. J.; Li, Y. C.; Gu, Q. F.; Wang, Z. X.; Chou, S. L.; Liu, H. K. et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun. 2020, 11, 980.

    CAS  Google Scholar 

  49. Yu, T. Y.; Hwang, J. Y.; Bae, I. T.; Jung, H. G.; Sun, Y. K. Highperformance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1−x]O2 cathodes for practical sodium-ion batteries. J. Power Sources 2019, 422, 1–8.

    CAS  Google Scholar 

  50. Xie, Y. Y.; Xu, G. L.; Che, H. Y.; Wang, H.; Yang, K.; Yang, X. R.; Guo, F. M.; Ren, Y.; Chen, Z. H.; Amine, K.; et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mater. 2018, 30, 4909–4918.

    CAS  Google Scholar 

  51. Yu, T. Y.; Kim, J.; Hwang, J. Y.; Kim, H.; Han, G.; Jung, H. G.; Sun, Y. K. High-energy O3-Na1−2xCax[Ni0.5Mn0.5]O2 cathodes for long-life sodium-ion batteries. J. Mater. Chem. A 2020, 8, 13776–13786.

    CAS  Google Scholar 

  52. Liu, Y. C.; Liu, X. B.; Bu, F.; Zhao, X. D.; Wang, L. X.; Shen, Q. Y.; Zhang, J.; Zhang, N.; Jiao, L. F.; Fan, L. Z. Boosting fast and durable sodium-ion storage by tailoring well-shaped Na0.44MnO2 nanowires cathode. Electrochim. Acta 2019, 313, 122–130.

    CAS  Google Scholar 

  53. Tang, J. L.; Barker, J.; Pol, V. G. Sodium-ion battery anodes comprising carbon sheets: Stable cycling in half- and full-pouch cell configuration. Energy Technol. 2018, 6, 213–220.

    CAS  Google Scholar 

  54. Kim, J. K.; Lim, Y. J.; Kim, H.; Cho, G. B.; Kim, Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ. Sci. 2015, 8, 3589–3596.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 91963118), Science Technology Program of Jilin Province (No. 20200201066JC), Fundamental Research Funds for the Central Universities (No. 2412020QD013), China Postdoctoral Science Foundation (No. 2019M661187), and the National Postdoctoral Program for Innovative Talents (BX20190064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Long Wu.

Electronic Supplementary Material

12274_2021_3577_MOESM1_ESM.pdf

Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CD., Guo, JZ., Gu, ZY. et al. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 15, 925–932 (2022). https://doi.org/10.1007/s12274-021-3577-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3577-7

Keywords

Navigation