Skip to main content
Log in

Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium metal (Li) is believed to be the ultimate anode for lithium-ion batteries (LIBs) owing to the advantages of high theoretical capacity, the lowest electrochemical potential, and light weight. Nevertheless, issues such as uncontrollable growth of Li dendrites, large volume changes, high chemical reactivity, and unstable solid electrolyte interphase (SEI) hinder its rapid development and practical application. Herein a stable and dendrite-free Li-metal anode is obtained by designing a flexible and freestanding MXene/COF framework for metallic Li. COF-LZU1 microspheres are distributed among the MXene film framework. Lithiophilic COF-LZU1 microspheres as nucleation seeds can promote uniform Li nucleation by homogenizing the Li+ flux and lowering the nucleation barrier, finally resulting in dense and dendrite-free Li deposition. Under the regulation of the COF-LZU1 seeds, the Coulombic efficiency of the MXene/COF-LZU1 framework and electrochemical stability of corresponding symmetric cells are obviously enhanced. Li-S full cells with the modified Li-metal anode and sulfurized polyacrylonitrile (S@PAN) cathode also exhibited a superior electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  2. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  3. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  4. Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Towards better Li metal anodes: Challenges and strategies. Mater. Today 2020, 33, 56–74.

    Article  CAS  Google Scholar 

  5. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  CAS  Google Scholar 

  6. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  CAS  Google Scholar 

  7. Fang, C. C.; Wang, X. F.; Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 2019, 1, 152–158.

    Article  CAS  Google Scholar 

  8. Wei, C. L.; Tao, Y.; Fei, H. F.; An, Y. L.; Tian, Y.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Mater. 2020, 30, 206–227.

    Article  Google Scholar 

  9. Xiang, J. W.; Yang, L. Y.; Yuan, L. X.; Yuan, K.; Zhang, Y.; Huang, Y. Y.; Lin, J.; Pan, F.; Huang, Y. H. Alkali-metal anodes: From lab to market. Joule 2019, 3, 2334–2363.

    Article  CAS  Google Scholar 

  10. Zhang, X.; Yang, Y. A.; Zhou, Z. Towards practical lithium-metal anodes. Chem. Soc. Rev. 2020, 49, 3040–3071.

    Article  CAS  Google Scholar 

  11. Shen, X.; Liu, H.; Cheng, X. B.; Yan, C.; Huang, J. Q. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018, 12, 161–175.

    Article  Google Scholar 

  12. Shen, L.; Shi, P. R.; Hao, X. G.; Zhao, Q.; Ma, J. B.; He, Y. B.; Kang, F. Y. Progress on lithium dendrite suppression strategies from the interior to exterior by hierarchical structure designs. Small 2020, 16, 2000699.

    Article  CAS  Google Scholar 

  13. Wu, H. L.; Zhang, Y. B.; Deng, Y. Q.; Huang, Z. J.; Zhang, C.; He, Y. B.; Lv, W.; Yang, Q. H. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes. Sci. China Mater. 2019, 62, 87–94.

    Article  CAS  Google Scholar 

  14. Li, Y. H.; Wang, Y. K.; Shi, Y. C.; Wu, H.; Zeng, J. C.; Bu, H. T.; Zhu, M.; Xiao, C. H.; Zhang, Y. F.; Gao, G. X. et al. Ionic liquid assisted electrochemical coating zinc nanoparticles on carbon cloth as lithium dendrite suppressing host. Sci. Bull. 2020, 65, 1094–1102.

    Article  CAS  Google Scholar 

  15. Liu, S.; Wang, A. X.; Li, Q. Q.; Wu, J. S.; Chiou, K.; Huang, J. X.; Luo, J. Y. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule 2018, 2, 184–193.

    Article  CAS  Google Scholar 

  16. Jie, Y. L.; Ren, X. D.; Cao, R. G.; Cai, W. B.; Jiao, S. H. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv. Funct. Mater. 2020, 30, 1910777.

    Article  CAS  Google Scholar 

  17. Zhang, Y. C.; Fei, H. F.; An, Y. L.; Wei, C. L.; Feng, J. K. High voltage, flexible and low cost all-solid-state lithium metal batteries with a wide working temperature range. ChemistrySelect 2020, 5, 1214–1219.

    Article  CAS  Google Scholar 

  18. Xia, Q. Y.; Zhang, Q. H.; Sun, S.; Hussain, F.; Zhang, C. C.; Zhu, X. H.; Meng, F. Q.; Liu, K. M.; Geng, H.; Xu, J. et al. Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high-performance all-solid-state thin film lithium microbatteries. Adv. Mater. 2021, 33, 2003524.

    Article  CAS  Google Scholar 

  19. Gao, Y.; Rojas, T.; Wang, K.; Liu, S.; Wang, D. W.; Chen, T. H.; Wang, H. Y.; Ngo, A. T.; Wang, D. H. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 2020, 5, 534–542.

    Article  CAS  Google Scholar 

  20. Wei, C. L.; Tan, L. W.; Tao, Y.; An, Y. L.; Tian, Y.; Jiang, H. Y.; Feng, J. K.; Qian, Y T. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Storage Mater. 2021, 34, 12–21.

    Article  Google Scholar 

  21. Wei, C. L.; Fei, H. F.; An, Y. L.; Tao, Y.; Feng, J. K.; Qian, Y. T. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li-metal anode. J. Mater. Chem. A 2019, 7, 18861–18870.

    Article  CAS  Google Scholar 

  22. Zhang, W. D.; Tu, Z. Y.; Qian, J. W.; Choudhury, S.; Archer, L. A.; Lu, Y. Y. Design principles of functional polymer separators for high-energy, metal-based batteries. Small 2018, 14, 1703001.

    Article  CAS  Google Scholar 

  23. Luo, W.; Zhou, L. H.; Fu, K.; Yang, Z.; Wan, J. Y.; Manno, M.; Yao, Y. G.; Zhu, H. L.; Yang, B.; Hu, L. B. A thermally conductive separator for stable Li metal anodes. Nano Lett. 2015, 15, 6149–6154.

    Article  CAS  Google Scholar 

  24. Liu, H.; Cheng, X. B.; Huang, J. Q.; Kaskel, S.; Chou, S. L.; Park, H. S.; Zhang, Q. Alloy anodes for rechargeable alkali-metal batteries: Progress and challenge. ACS Mater. Lett. 2019, 1, 217–229.

    Article  CAS  Google Scholar 

  25. Kong, L. L.; Wang, L.; Ni, Z. C.; Liu, S.; Li, G. R.; Gao, X. P. Lithiummagnesium alloy as a stable anode for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1808756.

    Article  CAS  Google Scholar 

  26. Xu, Y. B.; Wu, H. P.; Jia, H.; Zhang, J. G.; Xu, W.; Wang, C. M. Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy. ACS Nano 2020, 14, 8766–8775.

    Article  CAS  Google Scholar 

  27. Xu, X. Y.; Liu, Y. Y.; Hwang, J. Y.; Kapitanova, O. O.; Song, Z. X.; Sun, Y. K.; Matic, A.; Xiong, S. Z. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode. Adv. Energy Mater. 2020, 10, 2002390.

    Article  CAS  Google Scholar 

  28. Wang, A. X.; Deng, Q. B.; Deng, L. J.; Guan, X. Z.; Luo, J. Y. Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes. Adv. Funct. Mater. 2019, 29, 1902630.

    Article  CAS  Google Scholar 

  29. Wang, X. F.; Pawar, G.; Li, Y. J.; Ren, X. D.; Zhang, M. H.; Lu, B. Y.; Banerjee, A.; Liu, P.; Dufek, E. J.; Zhang, J. G. et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 2020, 19, 1339–1345.

    Article  CAS  Google Scholar 

  30. Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 2020, 7, 2002212.

    Article  CAS  Google Scholar 

  31. Huang, S. B.; Yang, H.; Hu, J. K.; Liu, Y. C.; Wang, K. X.; Peng, H. L.; Zhang, H.; Fan, L. Z. Early lithium plating behavior in confined nanospace of 3D lithiophilic carbon matrix for stable solid-state lithium metal batteries. Small 2019, 15, 1904216.

    Article  CAS  Google Scholar 

  32. Liu, Y. M.; Qin, X. Y.; Liu, F.; Huang, B. H.; Zhang, S. Q.; Kang, F. Y.; Li, B. H. Basal nanosuit of graphite for high-energy hybrid Li batteries. ACS Nano 2020, 14, 1837–1845.

    Article  CAS  Google Scholar 

  33. Luan, J. Y.; Zhang, Q.; Yuan, H. Y.; Sun, D.; Peng, Z. G.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Plasma-strengthened lithiophilicity of copper oxide nanosheet-decorated Cu foil for stable lithium metal anode. Adv. Sci. 2019, 6, 1901433.

    Article  CAS  Google Scholar 

  34. Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    Article  CAS  Google Scholar 

  35. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  Google Scholar 

  36. Wang, X. H.; Mathis, T. S.; Li, K.; Lin, Z. F.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 2019, 4, 241–248.

    Article  CAS  Google Scholar 

  37. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    Article  CAS  Google Scholar 

  38. Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

    Article  CAS  Google Scholar 

  39. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  CAS  Google Scholar 

  40. Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Zeng, G. F.; Feng, J. K.; Qian, Y. T. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 2019, 15, 1903214.

    Article  CAS  Google Scholar 

  41. Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Tao, Y.; Li, Y.; Feng, J. K. Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. Chin. Chem. Lett. 2020, 31, 980–983.

    Article  CAS  Google Scholar 

  42. Wei, C. L.; Fei, H. F.; An, Y. L.; Zhang, Y. C.; Feng, J. K. Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochim. Acta 2019, 309, 362–370.

    Article  CAS  Google Scholar 

  43. Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.

    Article  CAS  Google Scholar 

  44. Shi, H. D.; Zhang, C. J.; Lu, P. F.; Dong, Y. F.; Wen, P. C.; Wu, Z. S. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 2019, 13, 14308–14318.

    Article  CAS  Google Scholar 

  45. Fang, Y. Z.; Zhang, Y.; Zhu, K.; Lian, R. Q.; Gao, Y.; Yin, J. J.; Ye, K.; Cheng, K.; Yan, J.; Wang, G. L. et al. Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019, 13, 14319–14328.

    Article  CAS  Google Scholar 

  46. Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 15028–15033.

    Article  CAS  Google Scholar 

  47. Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

    Article  CAS  Google Scholar 

  48. Gu, J. A.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898.

    Article  CAS  Google Scholar 

  49. Zhang, D.; Wang, S.; Li, B.; Gong, Y. J.; Yang, S. B. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, 1901820.

    Article  CAS  Google Scholar 

  50. Chen, X.; Shang, M. W.; Niu, J. J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 2020, 20, 2639–2646.

    Article  CAS  Google Scholar 

  51. Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Guo, H. H.; Feng, J. K.; Qian, Y. T. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020, 26, 223–233.

    Article  Google Scholar 

  52. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  CAS  Google Scholar 

  53. Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

    Article  CAS  Google Scholar 

  54. Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

    Article  CAS  Google Scholar 

  55. Cheng, Z. Y.; Xie, M. L.; Mao, Y. Y.; Ou, J. X.; Zhang, S. J.; Zhao, Z.; Li, J. L.; Fu, F.; Wu, J. H.; Shen, Y. B. et al. Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors. Adv. Energy Mater. 2020, 10, 1904230.

    Article  CAS  Google Scholar 

  56. Zhao, Z. D.; Chen, W. J.; Impeng, S.; Li, M. X.; Wang, R.; Liu, Y. C.; Zhang, L.; Dong, L.; Unruangsri, J.; Peng, C. X. et al. Covalent organic framework-based ultrathin crystalline porous film: Manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J. Mater. Chem. A 2020, 8, 3459–3467.

    Article  CAS  Google Scholar 

  57. Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.

    Article  CAS  Google Scholar 

  58. Xie, H. Y.; Hao, Q.; Jin, H. C.; Xie, S.; Sun, Z. W.; Ye, Y. D.; Zhang, C. H.; Wang, D.; Ji, H. X.; Wan, L. J. Redistribution of Li-ions using covalent organic frameworks towards dendrite-Free lithium anodes: A mechanism based on a Galton Board. Sci. China Chem. 2020, 63, 1306–1314.

    Article  CAS  Google Scholar 

  59. Jiang, C.; Gu, Y. M.; Tang, M.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L.; Hu, W. P. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS Appl. Mater. Interfaces 2020, 12, 10461–10470.

    Article  CAS  Google Scholar 

  60. Song, Y. W.; Shi, P.; Li, B. Q.; Chen, X.; Zhao, C. X.; Chen, W. J.; Zhang, X. Q.; Chen, X.; Zhang, Q. Covalent organic frameworks construct precise lithiophilic sites for uniform lithium deposition. Matter 2021, 4, 253–264.

    Article  CAS  Google Scholar 

  61. Xu, Y.; Zhou, Y.; Li, T.; Jiang, S. H.; Qian, X.; Yue, Q.; Kang, Y. J. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Storage Mater. 2020, 25, 334–341.

    Article  Google Scholar 

  62. Wang, S. H.; Niu, H. Y.; Cao, D.; Cai, Y. Q. Covalent-organic frameworks as adsorbent and matrix of SALDI-TOF MS for the enrichment and rapid determination of fluorochemicals. Talanta 2019, 194, 522–527.

    Article  CAS  Google Scholar 

  63. Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

    Article  CAS  Google Scholar 

  64. Chen, L.; Wang, W. P.; Fang, Q. Y.; Zuo, K. C.; Hou, G. M.; Ai, Q.; Li, Q. L.; Ci, L. J.; Lou, J. High performance hierarchically nanostructured graphene oxide/covalent organic framework hybrid membranes for stable organic solvent nanofiltration. Appl. Mater. Today 2020, 20, 100791.

    Article  Google Scholar 

  65. Fan, F. H.; Xiang, P. Y.; Zhao, L. Q. Vibrational spectra analysis of amorphous lactose in structural transformation: Water/temperature plasticization, crystal formation, and molecular mobility. Food Chem. 2021, 341, 128215.

    Article  CAS  Google Scholar 

  66. Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.

    Article  CAS  Google Scholar 

  67. Zhang, S. M.; Chen, J.; Tang, T.; Jiang, Y. Z.; Chen, G. R.; Shao, Q.; Yan, C. H.; Zhu, T. J.; Gao, M. X.; Liu, Y. F. et al. A novel strategy to significantly enhance the initial voltage and suppress voltage fading of a Li- and Mn-rich layered oxide cathode material for lithiumion batteries. J. Mater. Chem. A 2018, 6, 3610–3624.

    Article  CAS  Google Scholar 

  68. Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pan, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469–3491.

    Article  CAS  Google Scholar 

  69. Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

    Google Scholar 

  70. Xiao, X.; Zou, L. L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.

    Article  CAS  Google Scholar 

  71. Guo, Q. B.; Li, S.; Liu, X. J.; Lu, H. C.; Chang, X. Q.; Zhang, H. S.; Zhu, X. H.; Xia, Q. Y.; Yan, C. L.; Xia, H. Ultrastable sodium-sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 2020, 7, 1903246.

    Article  CAS  Google Scholar 

  72. Jin, F.; Hu, C. J.; Liu, C. H.; Zheng, Y.; Chen, H. W.; Shen, Y. B.; Chen, L. W. Enhancing the performance of sulfurized polyacrylonitrile cathode by in-situ wrapping. J. Electroanal. Chem. 2019, 835, 156–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2020JQ19), Taishan Scholars Program of Shandong Province (Nos. tsqn201812002 and ts20190908), the National Natural Science Foundation of China (No. 51972198), the Young Scholars Program of Shandong University (No. 2016WLJH03), the State Key Program of National Natural Science of China (No. 61633015), Shenzhen Fundamental Research Program (No. JCYJ20190807093405503), and the Project of the Taishan Scholar (No. ts201511004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Feng.

Electronic supplementary material

12274_2021_3433_MOESM1_ESM.pdf

Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Wang, Y., Zhang, Y. et al. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 14, 3576–3584 (2021). https://doi.org/10.1007/s12274-021-3433-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3433-9

Keywords

Navigation