Skip to main content
Log in

Confined nanospace pyrolysis: A versatile strategy to create hollow structured porous carbons

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Confined nanospace pyrolysis (CNP) has attracted increasing attention as a general strategy to prepare task-specific hollow structured porous carbons (HSPCs) in the past decade. The unique advantages of the CNP strategy include its outstanding ability in control of the monodispersity, porosity and internal cavity of HSPCs. As a consequence, the obtained HSPCs perform exceptionally well in applications where a high dispersibility and tailored cavity are particularly required, such as drug delivery, energy storage, catalysis and so on. In this review, the fundamentals of the CNP strategy and its advances in structural alternation is first summarized, then typical applications are discussed by exemplifying specific synthesis examples. In addition, this review offers insights into future developments for advanced task-specific hollow structured porous materials prepared by the CNP strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bin, D. S.; Li, Y. M.; Sun, Y. G.; Duan, S. Y.; Lu, Y. X.; Ma, J. M.; Cao, A. M.; Hu, Y. S.; Wan, L. J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 2018, 8, 1800855.

    Article  CAS  Google Scholar 

  2. Liu, J.; Kopold, P.; Wu, C.; Van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531–3538.

    Article  CAS  Google Scholar 

  3. Pei, F.; Lin, L. L.; Fu, A.; Mo, S. G.; Ou, D. H.; Fang, X. L.; Zheng, N. F. A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. Joule 2018, 2, 323–336.

    Article  CAS  Google Scholar 

  4. Chen, C. H.; Wang, H. Y.; Han, C. L; Deng, J.; Wang, J.; Li, M. M.; Tang, M. H.; Jin, H. Y.; Wang, Y. Asymmetric flasklike hollow carbonaceous nanoparticles fabricated by the synergistic interaction between soft template and biomass. J. Am. Chem. Soc. 2017, 139, 2657–2663.

    Article  CAS  Google Scholar 

  5. Zhang, H. B.; Liu, Y. Y.; Chen, T.; Zhang, J. T.; Zhang, J.; Lou, X. W. D. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix. Adv. Mater. 2019, 31, 1904548.

    Article  CAS  Google Scholar 

  6. Kim, S. Y.; Jeong, H. M.; Kwon, J. H.; Ock, I. W.; Suh, W. H.; Stucky, G. D.; Kang, J. K. Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life. Energy Environ. Sci. 2015, 8, 188–194.

    Article  CAS  Google Scholar 

  7. Chen, W. H.; Qiao, R.; Song, C. S.; Zhao, L. H.; Jiang, Z. J.; Maiyalagan, T.; Jiang, Z. Q. Tailoring the thickness of MoSe2 layer of the hierarchical double-shelled N-doped carbon@MoSe2 hollow nanoboxes for efficient and stable hydrogen evolution reaction. J. Catal. 2020, 381, 363–373.

    Article  CAS  Google Scholar 

  8. Zhao, R. H.; Wang, H.; Gao, N.; Liu, R.; Guo, T. Y.; Wu, J. T.; Zhang, T.; Li, J. P.; Du, J. P.; Asefa, T. Hollow hemispherical carbon microspheres with Mo2C nanoparticles synthesized by precursor design: Effective noble metal-free catalysts for dehydrogenation. Small Methods 2020, 4, 1900597.

    Article  CAS  Google Scholar 

  9. Yang, H.; Bradley, S. J.; Chan, A.; Waterhouse, G. I. N.; Nann, T.; Kruger, P. E.; Telfer, S. G. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites. J. Am. Chem. Soc. 2016, 138, 11872–11881.

    Article  CAS  Google Scholar 

  10. Liu, D. H.; Guo, Y.; Zhang, L. H.; Li, W. C.; Sun, T.; Lu, A. H. Switchable transport strategy to deposit active Fe/Fe3C cores into hollow microporous carbons for efficient chromium removal. Small 2013, 9, 3852–3857.

    Article  CAS  Google Scholar 

  11. Chen, Y.; Xu, P. F.; Wu, M. Y.; Meng, Q. S.; Chen, H. R.; Shu, Z.; Wang, J.; Zhang, L. X.; Li, Y. P.; Shi, J. L. Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering. Adv. Mater. 2014, 26, 4294–4301.

    Article  CAS  Google Scholar 

  12. Zhang, J. F.; Zhang, J.; Li, W. Y.; Chen, R.; Zhang, Z. Y.; Zhang, W. J.; Tang, Y. B.; Chen, X. Y.; Liu, G.; Lee, C. S. Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imagingguided highly effective chemo-thermal tumor therapy in vitro and in vivo. Theranostics 2017, 7, 3007–3020.

    Article  CAS  Google Scholar 

  13. Hofer, C. J.; Grass, R. N.; Zeltner, M.; Mora, C. A.; Krumeich, F.; Stark, W. J. Hollow carbon nanobubbles: Synthesis, chemical functionalization, and container-type behavior in water. Angew. Chem., Int. Ed. 2016, 55, 8761–8765.

    Article  CAS  Google Scholar 

  14. Chen, Y.; Chen, H. R.; Zeng, D. P.; Tian, Y. B.; Chen, F.; Feng, J. W.; Shi, J. L. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 2010, 4, 6001–6013.

    Article  CAS  Google Scholar 

  15. Zhang, S. J.; Qian, X. Q.; Zhang, L. L.; Peng, W. J.; Chen, Y. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for pH-responsive magnetic resonance imaging and on-demand drug release. Nanoscale 2015, 7, 7632–7643.

    Article  CAS  Google Scholar 

  16. Lu, A. H.; Sun, T.; Li, W. C.; Sun, Q.; Han, F.; Liu, D. H.; Guo, Y. Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew. Chem., Int. Ed. 2011, 50, 11765–11768.

    Article  CAS  Google Scholar 

  17. Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W. D.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.

    Article  CAS  Google Scholar 

  18. Liu, T.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage. Adv. Energy Mater. 2019, 9, 1803900.

    Article  CAS  Google Scholar 

  19. Tian, H.; Liang, J.; Liu, J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 2019, 31, 1903886.

    Article  CAS  Google Scholar 

  20. Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L; Zheng, N. F. Recent advances in hollow porous carbon materials for Lithium-Sulfur batteries. Small 2019, 15, 1804786.

    Article  CAS  Google Scholar 

  21. Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G. H.; Schüth, F. Hollow nano-and microstructures as catalysts. Chem. Rev. 2016, 116, 14056–14119.

    Article  CAS  Google Scholar 

  22. Qiao, Z. A.; Guo, B. K.; Binder, A. J.; Chen, J. H.; Veith, G. M.; Dai, S. Controlled synthesis of mesoporous carbon nanostructures via a “silica-assisted” strategy. Nano Lett. 2013, 13, 207–212.

    Article  CAS  Google Scholar 

  23. Fuertes, A. B.; Valle-Vigón, P.; Sevilla, M. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 2012, 48, 6124–6126.

    Article  CAS  Google Scholar 

  24. Fang, X. L.; Zang, J.; Wang, X. L.; Zheng, M. S.; Zheng, N. F. A multiple coating route to hollow carbon spheres with foam-like shells and their applications in supercapacitor and confined catalysis. J. Mater. Chem. A 2014, 2, 6191–6197.

    Article  CAS  Google Scholar 

  25. Lu, A. H.; Zhang, X. Q.; Sun, Q.; Zhang, Y.; Song, Q. W.; Schüth, F.; Chen, C. Y.; Cheng, F. Precise synthesis of discrete and dispersible carbon-protected magnetic nanoparticles for efficient magnetic resonance imaging and photothermal therapy. Nano Res. 2016, 9, 1460–1469.

    Article  CAS  Google Scholar 

  26. Wang, Q. G.; He, L.; Zhao, L. Y.; Liu, R. S.; Zhang, W. P.; Lu, A. H. Surface charge-driven nanoengineering of monodisperse carbon nanospheres with tunable surface roughness. Adv. Funct. Mater. 2020, 30, 1906117.

    Article  CAS  Google Scholar 

  27. Sun, Q.; Li, W. C.; Lu, A. H. Insight into structure-dependent self-activation mechanism in a confined nanospace of core-shell nanocomposites. Small 2013, 9, 2086–2090.

    Article  CAS  Google Scholar 

  28. Yang, T. Y.; Liu, J.; Zhou, R. F.; Chen, Z. G.; Xu, H. Y.; Qiao, S. Z. Monteiro, M. J. N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. J. Mater. Chem. A 2014, 2, 18139–18146.

    Article  CAS  Google Scholar 

  29. Du, J.; Yu, Y. F.; Liu, L.; Lv, H. J.; Chen, A. B.; Hou, S. L. Confined-space pyrolysis of polystyrene/polyacrylonitrile for Nitrogen-Doped hollow mesoporous carbon spheres with high supercapacitor performance. ACS Appl. Energy Mater. 2019, 2, 4402–4410.

    Article  CAS  Google Scholar 

  30. Du, J.; Liu, L.; Yu, Y. F.; Hu, Z. P.; Zhang, Y.; Liu, B. B.; Chen, A. B. Tuning confined nanospace for preparation of N-doped hollow carbon spheres for high performance supercapacitors. ChemSusChem 2019, 12, 303–309.

    Article  CAS  Google Scholar 

  31. Du, J.; Liu, L.; Liu, B. B.; Yu, Y. F.; Lv, H. J.; Chen, A. B. Encapsulation pyrolysis synchronous deposition for hollow carbon sphere with tunable textural properties. Carbon 2019, 143, 467–474.

    Article  CAS  Google Scholar 

  32. Wang, T.; Sun, Y.; Zhang, L. L.; Li, K. Q.; Yi, Y. K.; Song, S. Y.; Li, M. T.; Qiao, Z. A.; Dai, S. Space-confined polymerization: Controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures. Adv. Mater. 2019, 31, 1807876.

    Article  CAS  Google Scholar 

  33. Zhang, L. H.; He, B.; Li, W. C.; Lu, A. H. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for lithium-sulfur cathode. Adv. Energy Mater. 2017, 7, 1701518.

    Article  CAS  Google Scholar 

  34. Yu, X. F.; Li, W. C.; Hu, Y. R.; Ye, C. Y.; Lu, A. H. Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment. Nano Res. 2021, 14, 1565–1573.

    Article  CAS  Google Scholar 

  35. Yang, T. Y.; Zhou, R. F.; Wang, D. W.; Jiang, S. P.; Yamauchi, Y.; Qiao, S. Z.; Monteiro, M. J.; Liu, J. Hierarchical mesoporous yolk-shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chem. Commun. 2015, 51, 2518–2521.

    Article  CAS  Google Scholar 

  36. Yang, T. Y.; Liu, J.; Zheng, Y.; Monteiro, M. J.; Qiao, S. Z. Facile Fabrication of core-shell-structured Ag@carbon and mesoporous yolk-shell-structured Ag@carbon@silica by an extended stöber method. Chem. -Eur. J. 2013, 19, 6942–6945.

    Article  CAS  Google Scholar 

  37. Sun, Q.; He, B.; Zhang, X. Q.; Lu, A. H. Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano 2015, 9, 8504–8513.

    Article  CAS  Google Scholar 

  38. Du, J.; Liu, L.; Yu, Y. F.; Lv, H. J.; Zhang, Y.; Chen, A. B. Confined pyrolysis for direct conversion of solid resin spheres into yolk-shell carbon spheres for supercapacitor. J. Mater. Chem. A 2019, 7, 1038–1044.

    Article  CAS  Google Scholar 

  39. Du, J.; Liu, L.; Yu, Y. F.; Qin, Y. M.; Wu, H. X.; Chen, A. B. A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance. Nanoscale 2019, 11, 4453–4462.

    Article  CAS  Google Scholar 

  40. Zhang, X. H.; Li, Y. A.; Cao, C. B. Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials. J. Mater. Chem. 2012, 22, 13918–13921.

    Article  CAS  Google Scholar 

  41. Zhang, H. H.; He, H. N.; Luan, J. Y.; Huang, X. B.; Tang, Y. G.; Wang, H. Y. Adjusting the yolk-shell structure of carbon spheres to boost the capacitive K+ storage ability. J. Mater. Chem. A 2018, 6, 23318–23325.

    Article  CAS  Google Scholar 

  42. Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395–7398.

    Article  CAS  Google Scholar 

  43. He, J. R.; Luo, L.; Chen, Y. F.; Manthiram, A. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1702707.

    Article  CAS  Google Scholar 

  44. Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

    Article  CAS  Google Scholar 

  45. Liu, Y.; Kou, W.; Li, X. C.; Huang, C. Q.; Shui, R. B.; He, G. H. Constructing patch-Ni-shelled Pt@Ni nanoparticles within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries. Small 2019, 15, 1902431.

    Article  CAS  Google Scholar 

  46. Zhang, H. W.; Noonan, O.; Huang, X. D.; Yang, Y. N.; Xu, C.; Zhou, L.; Yu, C. Z. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579–4586.

    Article  CAS  Google Scholar 

  47. Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res. 2015, 8, 2663–2675.

    Article  CAS  Google Scholar 

  48. Ye, J. C.; Zang, J.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 2016, 4, 13223–13227.

    Article  CAS  Google Scholar 

  49. Du, J.; Liu, L.; Hu, Z. P.; Yu, Y. F.; Qin, Y. M.; Chen, A. B. Order Mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy. Adv. Funct. Mater. 2018, 28, 1802332.

    Article  CAS  Google Scholar 

  50. Zhang, X. Q.; Lu, A. H.; Sun, Q.; Yu, X. F.; Chen, J. Y.; Li, W. C. Unconventional synthesis of large pore ordered mesoporous carbon nanospheres for ionic liquid-based supercapacitors. ACS Appl. Energy Mater. 2018, 1, 5999–6005.

    Article  CAS  Google Scholar 

  51. Zhang, X. Q.; Sun, Q.; Dong, W.; Li, D.; Lu, A. H.; Mu, J. Q.; Li, W. C. Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage. J. Mater. Chem. A 2013, 1, 9449–9455.

    Article  CAS  Google Scholar 

  52. Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

    Article  CAS  Google Scholar 

  53. Liu, C.; Huang, X. D.; Wang, J.; Song, H.; Yang, Y. N.; Liu, Y.; Li, J. S.; Wang, L. J.; Yu, C. Z. Hollow mesoporous carbon nanocubes: Rigid-interface-induced outward contraction of metal-organic frameworks. Adv. Funct. Mater. 2018, 28, 1705253.

    Article  CAS  Google Scholar 

  54. Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C H.; Zhang, T. R. Well-dispersed ZIF-derived Co, N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

    Article  CAS  Google Scholar 

  55. Lei, C.; Han, F.; Sun, Q.; Li, W. C.; Lu, A. H. Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries. Chem.-Eur. J. 2014, 20, 139–145.

    Article  CAS  Google Scholar 

  56. Han, F.; Li, W. C.; Lei, C.; He, B.; Oshida, K.; Lu, A. H. Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as high-capacity lithium-ion battery. Small 2014, 10, 2637–2644.

    Article  CAS  Google Scholar 

  57. Han, F.; Ma, L. J.; Sun, Q.; Lei, C.; Lu, A. H. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries. Nano Res. 2014, 7, 1706–1717.

    Article  CAS  Google Scholar 

  58. Cheng, F.; Li, W. C.; Lu, A. H. Using confined carbonate crystals for the fabrication of nanosized metal oxide@carbon with superior lithium storage capacity. J. Mater. Chem. A 2016, 4, 15030–15035.

    Article  CAS  Google Scholar 

  59. Wang, L. M.; Sun, Q.; Wang, X.; Wen, T.; Yin, J. J.; Wang, P. Y.; Bai, R.; Zhang, X. Q.; Zhang, L. H.; Lu, A. H. et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955.

    Article  CAS  Google Scholar 

  60. Gu, J. L.; Su, S. S.; Li, Y. S.; He, Q. J.; Shi, J. L. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem. Commun. 2011, 47, 2101–2103.

    Article  CAS  Google Scholar 

  61. Huang, X.; Wu, S. S.; Du, X. Z. Gated mesoporous carbon nanoparticles as drug delivery system for stimuli-responsive controlled release. Carbon 2016, 101, 135–142.

    Article  CAS  Google Scholar 

  62. Xue, Z. H.; Zhang, F.; Qin, D. D.; Wang, Y. L.; Zhang, J. X.; Liu, J.; Feng, Y. J.; Lu, X. Q. One-pot synthesis of silver nanoparticle catalysts supported on N-doped ordered mesoporous carbon and application in the detection of nitrobenzene. Carbon 2014, 69, 481–489.

    Article  CAS  Google Scholar 

  63. Tanaka, S.; Fujimoto, H.; Denayer, J. F. M.; Miyamoto, M.; Oumi, Y.; Miyake, Y. Surface modification of soft-templated ordered mesoporous carbon for electrochemical supercapacitors. Micropor. Mesopor. Mater. 2015, 217, 141–149.

    Article  CAS  Google Scholar 

  64. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

    Article  CAS  Google Scholar 

  65. Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

    Article  CAS  Google Scholar 

  66. Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

    Article  CAS  Google Scholar 

  67. Zhou, G. M.; Zhao, Y. B.; Manthiram, A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv. Energy Mater. 2015, 5, 1402263.

    Article  CAS  Google Scholar 

  68. Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250–5256.

    Article  CAS  Google Scholar 

  69. Yin, L. C.; Liang, J.; Zhou, G. M.; Li, F.; Saito, R.; Cheng, H. M. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy 2016, 25, 203–210.

    Article  CAS  Google Scholar 

  70. Yang, T. Y.; Liang, J.; Sultana, I.; Rahman, M. M.; Monteiro, M. J.; Chen, Y.; Shao, Z. P.; Silva, S. R. P.; Liu, J. Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 2018, 6, 8280–8288.

    Article  CAS  Google Scholar 

  71. An, W. L.; Fu, J. J.; Su, J. J.; Wang, L.; Peng, X.; Wu, K.; Chen, Q. Y.; Bi, Y. J.; Gao, B.; Zhang, X. M. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes. J. Power Sources 2017, 345, 227–236.

    Article  CAS  Google Scholar 

  72. Liu, H.; Guo, H.; Liu, B. H.; Liang, M. F.; Lv, Z. L.; Adair, K. R.; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.

    Article  CAS  Google Scholar 

  73. Wang, J. J.; Luo, C.; Gao, T.; Langrock, A.; Mignerey, A. C.; Wang, C. S. An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 2015, 11, 473–481.

    Article  CAS  Google Scholar 

  74. Dong, C.; Yu, Q.; Ye, R. P.; Su, P. P.; Liu, J.; Wang, G. H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Voidconfinement effects in liquid-phase hydrogenations. Angew. Chem., Int. Ed. 2020, 132, 18532–18537.

    Article  Google Scholar 

  75. Yao, D. W.; Wang, Y.; Li, Y.; Zhao, Y. J.; Lv, J.; Ma, X. B. A highperformance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres. ACS Catal. 2018, 8, 1218–1226.

    Article  CAS  Google Scholar 

  76. Yao, D. W.; Wang, Y.; Hassan-Legault, K.; Li, A. T.; Zhao, Y. J.; Lv, J.; Huang, S. Y.; Ma, X. B. Balancing effect between adsorption and diffusion on catalytic performance inside hollow nanostructured catalyst. ACS Catal. 2019, 9, 2969–2976.

    Article  CAS  Google Scholar 

  77. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515

    Article  CAS  Google Scholar 

  78. Zhang, L. H.; Sun, Q.; Liu, D. H.; Lu, A. H. Magnetic hollow carbon nanospheres for removal of chromium ions. J. Mater. Chem. A 2013, 1, 9477–9483.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Nos. 20873014 and 21073026), National Natural Science Foundation for Distinguished Young Scholars (No. 21225312) and the Cheung Kong Scholars Program of China (No. T2015036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Hui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RP., Li, WC., Hao, GP. et al. Confined nanospace pyrolysis: A versatile strategy to create hollow structured porous carbons. Nano Res. 14, 3159–3173 (2021). https://doi.org/10.1007/s12274-021-3425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3425-9

Keywords

Navigation