Skip to main content
Log in

The atlas of ferroicity in two-dimensional MGeX3 family: Room-temperature ferromagnetic half metals and unexpected ferroelectricity and ferroelasticity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications. Here we systematically investigate a large family (148) of 2D MGeX3 (M = metal elements, X = O/S/Se/Te) by means of the high-throughput first-principles calculations, and focus on their possible ferroic properties including ferromagnetism, ferroelectricity, and ferroelasticity. We discover eight stable 2D ferromagnets including five semiconductors and three half-metals, 21 2D antiferromagnets, and 11 stable 2D ferroelectric semiconductors including two multiferroic materials. Particularly, MnGeSe3 and MnGeTe3 are predicted to be room-temperature 2D ferromagnetic half metals with Tc of 490 and 308 K, respectively. It is probably for the first time that ferroelectricity is uncovered in 2D MGeX3 family, which derives from the spontaneous symmetry breaking induced by unexpected displacements of Ge-Ge atomic pairs, and we also reveal that the electric polarizations are in proportion to the ratio of electronegativity of X and M atoms, and IVB group metal elements are highly favored for 2D ferroelectricity. Magnetic tunnel junction and water-splitting photocatalyst based on 2D ferroic MGeX3 are proposed as examples of wide potential applications. The atlas of ferroicity in 2D MGeX3 materials will spur great interest in experimental studies and would lead to diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    Article  CAS  Google Scholar 

  2. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  CAS  Google Scholar 

  3. Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Zhu, Y. T.; Huang, B. B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695–1701.

    Article  CAS  Google Scholar 

  4. Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    Article  CAS  Google Scholar 

  5. O’Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125–3131.

    Article  Google Scholar 

  6. Liu, L.; Chen, S. S.; Lin, Z. Z.; Zhang, X. A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature. J. Phys. Chem. Lett. 2020, 11, 7893–7900.

    Article  CAS  Google Scholar 

  7. Kulish, V. V.; Huang, W. Single-layer metal halides MX2 (X = Cl, Br, I): Stability and tunable magnetism from first principles and Monte Carlo simulations. J. Mater. Chem. C 2017, 5, 8734–8741.

    Article  CAS  Google Scholar 

  8. Chen, P.; Zou, J. Y.; Liu, B. G. Intrinsic ferromagnetism and quantum anomalous Hall effect in a CoBr2 monolayer. Phys. Chem. Chem. Phys. 2017, 19, 13432–13437.

    Article  CAS  Google Scholar 

  9. Jiang, Z.; Wang, P.; Xing, J. P.; Jiang, X.; Zhao, J. J. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 39032–39039.

    Article  CAS  Google Scholar 

  10. You, J. Y.; Zhang, Z.; Gu, B.; Su, G. Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous hall effect. Phys. Rev. Appl. 2019, 12, 024063.

    Article  CAS  Google Scholar 

  11. Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382–3386.

    Article  CAS  Google Scholar 

  12. van Gog, H.; Li, W. F.; Fang, C. M.; Koster, R. S.; Dijkstra, M.; van Huis, M. Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides. npj 2D Mater. Appl. 2019, 3, 18.

    Article  Google Scholar 

  13. Deng, Y. J.; Yu, Y. K.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    Article  CAS  Google Scholar 

  14. Zhuang, H. L.; Xie, Y.; Kent, P. R. C.; Ganesh, P. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys. Rev. B 2015, 92, 035407.

    Article  Google Scholar 

  15. Sivadas, N.; Daniels, M. W.; Swendsen, R. H.; Okamoto, S.; Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 2015, 91, 235425.

    Article  Google Scholar 

  16. Chittari, B. L.; Park, Y.; Lee, D.; Han, M.; MacDonald, A. H. Hwang, E.; Jung, J. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 2016, 94, 184428.

    Article  Google Scholar 

  17. Dong, X. J.; You, J. Y.; Gu, B.; Su, G. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous hall conductivity in two-dimensional Cr2Ge2Se6. Phys. Rev. Appl. 2019, 12, 014020.

    Article  CAS  Google Scholar 

  18. Ren, Y. L.; Ge, Y. F.; Wan, W. H.; Li, Q. Q.; Liu, Y. Two dimensional ferromagnetic semiconductor: Monolayer CrGeS3. J. Phys.: Condens. Matter 2020, 32, 015701.

    CAS  Google Scholar 

  19. You, J. Y.; Zhang, Z.; Dong, X. J.; Gu, B.; Su, G. Two-dimensional magnetic semiconductors with room Curie temperatures. Phys. Rev. Res. 2020, 2, 013002.

    Article  CAS  Google Scholar 

  20. Kabiraj, A.; Kumar, M.; Mahapatra, S. High-throughput discovery of high Curie point two-dimensional ferromagnetic materials. NPJ Comput. Mater. 2020, 6, 35.

    Article  Google Scholar 

  21. Ding, W. J.; Zhu, J. B.; Wang, Z.; Gao, Y. F.; Xiao, D.; Gu, Y.; Zhang, Z. Y.; Zhu, W. G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956.

    Article  CAS  Google Scholar 

  22. Liu, F. C.; You, L.; Seyler, K. L.; Li, X. B.; Yu, P.; Lin, J. H.; Wang, X. W.; Zhou, J. D.; Wang, H.; He, H. Y. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357.

    Article  CAS  Google Scholar 

  23. Lai, Y. F.; Song, Z. G.; Wan, Y.; Xue, M. Z.; Wang, C. S.; Ye, Y.; Dai, L.; Zhang, Z. D.; Yang, W. Y.; Du, H. L. et al. Two-dimensional ferromagnetism and driven ferroelectricity in van der Waals CuCrP2S6. Nanoscale 2019, 11, 5163–5170.

    Article  CAS  Google Scholar 

  24. Shirodkar, S. N.; Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 2014, 112, 157601.

    Article  Google Scholar 

  25. Wu, M. H.; Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241.

    Article  CAS  Google Scholar 

  26. Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278.

    Article  CAS  Google Scholar 

  27. Wang, H.; Qian, X. F. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 2017, 4, 015042.

    Article  Google Scholar 

  28. Chang, K.; Küster, F.; Miller, B. J.; Ji, J. R.; Zhang, J. L.; Sessi, P.; Barraza-Lopez, S.; Parkin, S. S. P. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett. 2020, 20, 6590–6597.

    Article  CAS  Google Scholar 

  29. Luo, W.; Xu, K.; Xiang, H. J. Two-dimensional hyperferroelectric metals: A different route to ferromagnetic-ferroelectric multiferroics. Phys. Rev. B 2017, 96, 235415.

    Article  Google Scholar 

  30. Liu, C.; Wan, W. H.; Ma, J.; Guo, W.; Yao, Y. G. Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale 2018, 10, 7984–7990.

    Article  CAS  Google Scholar 

  31. Wan, W. H.; Liu, C.; Xiao, W. D.; Yao, Y. G. Promising ferroelectricity in 2D group IV tellurides: A first-principles study. Appl. Phys. Lett. 2017, 111, 132904.

    Article  Google Scholar 

  32. Chandrasekaran, A.; Mishra, A.; Singh, A. K. Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nano Lett. 2017, 17, 3290–3296.

    Article  CAS  Google Scholar 

  33. Xu, B.; Xiang, H.; Xia, Y. D.; Jiang, K.; Wan, X. G.; He, J.; Yin, J.; Liu, Z. G. Monolayer AgBiP2Se6: An atomically thin ferroelectric semiconductor with out-plane polarization. Nanoscale 2017, 9, 8427–8434.

    Article  CAS  Google Scholar 

  34. Qi, J. S.; Wang, H.; Chen, X. F.; Qian, X. F. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl. Phys. Lett. 2018, 113, 043102.

    Article  Google Scholar 

  35. Ma, X. Y.; Lyu, H. Y.; Hao, K. R.; Zhao, Y. M.; Qian, X. F.; Yan, Q. B.; Su, G. Large family of two-dimensional ferroelectric metals discovered via machine learning. Sci. Bull. 2021, 66, 233–242.

    Article  CAS  Google Scholar 

  36. Yang, Q.; Wu, M. H.; Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 2018, 9, 7160–7164.

    Article  CAS  Google Scholar 

  37. Fei, Z. Y.; Zhao, W. J.; Palomaki, T. A.; Sun, B. S.; Miller, M. K.; Zhao, Z. Y.; Yan, J. Q.; Xu, X. D.; Cobden, D. H. Ferroelectric switching of a two-dimensional metal. Nature 2018, 560, 336–339.

    Article  CAS  Google Scholar 

  38. Sharma, P.; Xiang, F. X.; Shao, D. F.; Zhang, D. W.; Tsymbal, E. Y.; Hamilton, A. R.; Seidel, J. A room-temperature ferroelectric semimetal. Sci. Adv. 2019, 5, eaax5080.

    Article  CAS  Google Scholar 

  39. Li, W. B.; Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 2016, 7, 10843.

    Article  CAS  Google Scholar 

  40. Zhao, H. J.; Ren, W.; Yang, Y. R.; Íñiguez, J.; Chen, X. M.; Bellaiche, L. Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties. Nat. Commun. 2014, 5, 4021.

    Article  CAS  Google Scholar 

  41. Fang, Y. W.; Ding, H. C.; Tong, W. Y.; Zhu, W. J.; Shen, X.; Gong, S. J.; Wan, X. G.; Duan, C. G. First-principles studies of multiferroic and magnetoelectric materials. Sci. Bull. 2015, 60, 156–181.

    Article  CAS  Google Scholar 

  42. Dong, S.; Liu, J. M.; Cheong, S. W.; Ren, Z. F. Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology. Adv. Phys. 2015, 64, 519–626.

    Article  CAS  Google Scholar 

  43. Zhong, T. T.; Li, X. Y.; Wu, M. H.; Liu, J. M. Room-temperature multiferroicity and diversified magnetoelectric couplings in 2D materials. Nat. Sci. Rev. 2020, 7, 373–380.

    Article  CAS  Google Scholar 

  44. Xu, M. L.; Huang, C. X.; Li, Y. W.; Liu, S. Y.; Zhong, X.; Jena, P.; Kan, E.; Wang, Y. C. Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer. Phys. Rev. Lett. 2020, 124, 067602.

    Article  CAS  Google Scholar 

  45. Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

    Article  CAS  Google Scholar 

  46. Chen, S. Q.; Yuan, S.; Hou, Z. P.; Tang, Y. L.; Zhang, J. P.; Wang, T.; Li, K.; Zhao, W. W.; Liu, X. J.; Chen, L. et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv. Mater. 2021, 33, 2000857.

    Article  CAS  Google Scholar 

  47. Zhao, P.; Ma, Y. D.; Lv, X. S.; Li, M. M.; Huang, B. B.; Dai, Y. Two-dimensional III2-VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy 2018, 51, 533–538.

    Article  CAS  Google Scholar 

  48. Ashton, M.; Gluhovic, D.; Sinnott, S. B.; Guo, J.; Stewart, D. A.; Hennig, R. G. Two-dimensional intrinsic half-metals with large spin gaps. Nano Lett. 2017, 17, 5251–5257.

    Article  CAS  Google Scholar 

  49. Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283.

    Article  CAS  Google Scholar 

  50. Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    Article  CAS  Google Scholar 

  51. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

    Article  CAS  Google Scholar 

  52. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  53. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  54. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  55. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

    Article  CAS  Google Scholar 

  56. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  CAS  Google Scholar 

  57. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  58. Bickers, N. E.; Scalapino, D. J.; White, S. R. Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. Phys. Rev. Let. 1989, 62, 961–964.

    Article  CAS  Google Scholar 

  59. Charlesworth, J. P. A.; Godby, R. W.; Needs, R. J. First-principles calculations of many-body band-gap narrowing at an Al/GaAs (110) interface. Phys. Rev. Lett. 1993, 70, 1685–1688.

    Article  CAS  Google Scholar 

  60. Wang, D. S.; Wu, R. Q.; Freeman, A. J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model. J. Phys. Rev. B 1993, 47, 14932–14947.

    Article  CAS  Google Scholar 

  61. Wol, U. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 1989, 62, 361–364.

    Article  Google Scholar 

  62. Chen, X. F.; Qi, J. S.; Shi, D. N. Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction. Phys. Lett. A 2015, 379, 60–63.

    Article  CAS  Google Scholar 

  63. Wang, N. Z.; Tang, H. B.; Shi, M. Z.; Zhang, H.; Zhuo, W. Z.; Liu, D. Y.; Meng, F. B.; Ma, L. K.; Ying, J. J.; Zou, L. J. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 2019, 141, 17166–17173.

    Article  CAS  Google Scholar 

  64. Verzhbitskiy, I. A.; Kurebayashi, H.; Cheng, H. X.; Zhou, J.; Khan, S.; Feng, Y. P.; Eda, G. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 2020, 3, 460–465.

    Article  CAS  Google Scholar 

  65. Dong, L.; Lou, J.; Shenoy, V. B. Large in-plane and vertical piezoelectricity in janus transition metal dichalchogenides. ACS Nano 2017, 11, 8242–8248.

    Article  CAS  Google Scholar 

  66. Ouyang, R. H.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L. M. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2018, 2, 083802.

    Article  CAS  Google Scholar 

  67. Mentel, L. M. mendeleev-A Python resource for properties of chemical elements, ions and isotopes. 2014. Available at: https://github.com/lmmentel/mendeleev.

  68. Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.

    Article  CAS  Google Scholar 

  69. Yang, W.; Cao, Y.; Han, J. C.; Lin, X. Y.; Wang, X. H.; Wei, G. D.; Lv, C.; Bournel, A.; Zhao, W. S. Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Nanoscale 2021, 13, 862–868.

    Article  CAS  Google Scholar 

  70. Meng, H.; Wang, J. P. Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl. Phys. Lett. 2006, 88, 172506.

    Article  Google Scholar 

  71. Fu, C. F.; Sun, J. Y.; Luo, Q. Q.; Li, X. X.; Hu, W.; Yang, J. L. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 2018, 18, 6312–6317.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Bo Gu, Prof. Zheng-Chuan Wang, Dr. Jing-Yang You, and Ms. Zhen Zhang for helpful discussions. All calculations are performed on Tianhe-2 at National Supercomputing Center in Guangzhou, China. This work is supported in part by the National Key R&D Program of China (No. 2018YFA0305800), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000), the National Natural Science Foundation of China (No. 11834014), the Beijing Municipal Science and Technology Commission (No. Z118100004218001), the fundamental research funds for the central universities, and University of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Bo Yan or Gang Su.

Ethics declarations

There are no conflicts to declare.

Electronic Supplementary Material

12274_2021_3415_MOESM1_ESM.pdf

The atlas of ferroicity in two-dimensional MGeX3 family: Room-temperature ferromagnetic half metals and unexpected ferroelectricity and ferroelasticity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, KR., Ma, XY., Lyu, HY. et al. The atlas of ferroicity in two-dimensional MGeX3 family: Room-temperature ferromagnetic half metals and unexpected ferroelectricity and ferroelasticity. Nano Res. 14, 4732–4739 (2021). https://doi.org/10.1007/s12274-021-3415-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3415-6

Keywords

Navigation