Skip to main content
Log in

Joule-heated carbonized melamine sponge for high-speed absorption of viscous oil spills

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Introducing heating function to oil sorbents opens up a new pathway to the fast cleanup of viscous crude oil spills in situ. The oil sorption speed increases with the rise of the temperature, thus oil sorbents with high heating temperature are desirable. Besides, the oil sorbents also need to be produced environment-friendly. Here we present carbonized melamine-formaldehyde sponges (CMSs) that exhibited superior heating performance and the CMSs could be massively fabricated through a non-polluting pyrolysis process. The conductive CMSs could be heated over 300 °C with a low applied voltage of 6.9 V and keep above 250 °C for 30 min in the air without obvious damage. Such high heating performance enabled heating up the oil spills with a high rate of 2.65 °C·s−1 and 14% improvement of oil sorption coefficient compared with the state-of-the-art value. We demonstrated that one joule-heated CMS could continuously and selectively collect viscous oil spills (9,010 mPa·s) 690 times its own weight in one hour. The CMSs will be a highly competitive sorbent material for the fast remediation of future crude oil spills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, D. B. Long-term ecosystem response to the exxon valdez oil spill. Science 2003, 302, 2082–2086.

    Article  CAS  Google Scholar 

  2. Joye, S. B. Deepwater horizon, 5 years on. Science 2015, 349, 592–593.

    Article  CAS  Google Scholar 

  3. Schrope, M. Oil spill: Deep wounds. Nature 2011, 472, 152–154.

    Article  CAS  Google Scholar 

  4. Broje, V.; Keller, A. A. Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ. Sci. Technol. 2006, 40, 7914–7918.

    Article  CAS  Google Scholar 

  5. Paul, J. H.; Hollander, D.; Coble, P.; Daly, K. L.; Murasko, S.; English, D.; Basso, J.; Delaney, J.; McDaniel, L.; Kovach, C. W. Toxicity and mutagenicity of gulf of mexico waters during and after the deepwater horizon oil spill. Environ. Sci. Technol. 2013, 47, 9651–9659.

    Article  CAS  Google Scholar 

  6. Kujawinski, E. B.; Soule, M. C. K.; Valentine, D. L.; Boysen, A. K.; Longnecker, K.; Redmond, M. C. Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol. 2011, 45, 1298–1306.

    Article  CAS  Google Scholar 

  7. Wang, C.; Chen, Q.; Sun, F.; Zhang, D. Q.; Zhang, G. X.; Huang, Y. Y.; Zhao, R.; Zhu, D. B. Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: Reversible tuning of the gel-sol transition by redox reactions and light irradiation. J. Am. Chem. Soc. 2010, 132, 3092–3096.

    Article  CAS  Google Scholar 

  8. Song, Y. Y.; Zhou, J. J.; Fan, J. B.; Zhai, W. Z.; Meng, J. X.; Wang, S. T. Hydrophilic/oleophilic magnetic janus particles for the rapid and efficient oil-water separation. Adv. Funct. Mater. 2018, 28, 1802493.

    Article  CAS  Google Scholar 

  9. Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Natl. Sci. Rev. 2017, 2, 17036.

    CAS  Google Scholar 

  10. Yuan, J. K.; Liu, X. G.; Akbulut, O.; Hu, J. Q.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336.

    Article  CAS  Google Scholar 

  11. Hayase, G.; Kanamori, K.; Fukuchi, M.; Kaji, H.; Nakanishi, K. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew. Chem., Int. Ed. 2013, 52, 1986–1989.

    Article  CAS  Google Scholar 

  12. Zhang, J. Y.; Cheng, Y. H.; Tebyetekerwa, M.; Meng, S.; Zhu, M. F.; Lu, Y. F. “Stiff-soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 2019, 29, 1806407.

    Article  CAS  Google Scholar 

  13. Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658–5662.

    Article  CAS  Google Scholar 

  14. Zhang, X. Y.; Li, Z.; Liu, K. S.; Jiang, L. Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv. Funct. Mater. 2013, 23, 2881–2886.

    Article  CAS  Google Scholar 

  15. Cui, Y.; Wang, Y. J.; Shao, Z. Y.; Mao, A. R.; Gao, W. W.; Bai, H. Smart sponge for fast liquid absorption and thermal responsive self-squeezing. Adv. Mater. 2020, 32, 1908249.

    Article  CAS  Google Scholar 

  16. Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.

    Article  CAS  Google Scholar 

  17. Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101–5105.

    Article  CAS  Google Scholar 

  18. Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

    Article  CAS  Google Scholar 

  19. Wang, H. T.; Mi, X. Y.; Li, Y.; Zhan, S. H. 3D graphene-based macrostructures for water treatment. Adv. Mater. 2020, 32, 1806843.

    Article  CAS  Google Scholar 

  20. Yousefi, N.; Lu, X. L.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107–119.

    Article  CAS  Google Scholar 

  21. Kuang, Y. D.; Chen, C. J.; Chen, G.; Pei, Y.; Pastel, G.; Jia, C.; Song, J. W.; Mi, R. Y.; Yang, B.; Das, S. et al. Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil. Adv. Funct. Mater. 2019, 29, 1900162.

    Article  CAS  Google Scholar 

  22. Laitinen, O.; Suopajärvi, T.; Österberg, M.; Liimatainen, H. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl. Mater. Interfaces 2017, 9, 25029–25037.

    Article  CAS  Google Scholar 

  23. Ge, J.; Zhao, H. Y.; Zhu, H. W.; Huang, J.; Shi, L. A.; Yu, S. H. Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives. Adv. Mater. 2016, 28, 10459–10490.

    Article  CAS  Google Scholar 

  24. Yang W. C. Wang, H. Modeling of oil evaporation in aqueous environment. Water Res. 1977, 11, 879–887.

    Article  CAS  Google Scholar 

  25. Escardino, A.; Beltrán, V.; Barba, A.; Sánchez, E. Liquid suction by porous ceramic materials 4: Influence of firing conditions. Br. Ceram. Trans. 1999, 98, 225–229.

    Article  CAS  Google Scholar 

  26. Meza, L. R.; Das, S.; Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014, 345, 1322–1326.

    Article  CAS  Google Scholar 

  27. Jang, J. H.; Ullal, C. K.; Maldovan, M.; Gorishnyy, T.; Kooi, S.; Koh, C.; Thomas, E. L. 3D micro- and nanostructures via interference lithography. Adv. Funct. Mater. 2007, 17, 3027–3041.

    Article  CAS  Google Scholar 

  28. Saha, S. K.; Wang, D. E.; Nguyen, V. H.; Chang, Y. N.; Oakdale, J. S.; Chen, S. C. Scalable submicrometer additive manufacturing. Science 2019, 366, 105–109.

    Article  CAS  Google Scholar 

  29. Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

    Article  CAS  Google Scholar 

  30. Guo, F.; Jiang, Y. Q.; Xu, Z.; Xiao, Y. H.; Fang, B.; Liu, Y. J.; Gao, W. W.; Zhao, P.; Wang, H. T.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881.

    Article  CAS  Google Scholar 

  31. Siéfert, E.; Reyssat, E.; Bico, J.; Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 2019, 18, 24–28.

    Article  CAS  Google Scholar 

  32. Fragouli, D.; Athanassiou, A. Graphene heaters absorb faster. Nat. Nanotechnol. 2017, 12, 406–407.

    Article  CAS  Google Scholar 

  33. Ge, J.; Shi, L. A.; Wang, Y. C.; Zhao, H. Y.; Yao, H. B.; Zhu, Y. B.; Zhang, Y.; Zhu, H. W.; Wu, H. A.; Yu, S. H. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 2017, 12, 434–440.

    Article  CAS  Google Scholar 

  34. Zhang, C.; Wu, M. B.; Wu, B. H.; Yang, J.; Xu, Z. K. Solar-driven self-heating sponges for highly efficient crude oil spill remediation. J. Mater. Chem. A 2018, 6, 8880–8885.

    Article  CAS  Google Scholar 

  35. Yu, M.; Xu, P.; Yang, J.; Ji, L.; Li, C. S. Self-growth of MoS2 sponge for highly efficient photothermal cleanup of high-viscosity crude oil spills. Adv. Mater. Interfaces 2020, 7, 1901671.

    Article  CAS  Google Scholar 

  36. Think bigger. Nat. Nanotechnol. 2017, 12, 395.

    Article  Google Scholar 

  37. Moore, W R.; Donnelly, E. Thermal degradation of melamineformaldehyde resins. J. Chem. Technol. Biotechnol. 1963, 13, 537–543.

    CAS  Google Scholar 

  38. Bin, D. S.; Lin, X. J.; Sun, Y. G.; Xu, Y. S.; Zhang, K.; Cao, A. M.; Wan, L. J. Engineering hollow carbon architecture for high-performance k-ion battery anode. J. Am. Chem. Soc. 2018, 140, 7127–7134.

    Article  CAS  Google Scholar 

  39. Anderson, I. H.; Cawley, M.; Steedman, W. Melamine-formaldehyde resins II.—Thermal degradation of model compounds and resins. Br. Polym. J. 1971, 3, 86–92.

    Article  CAS  Google Scholar 

  40. Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590–593.

    Article  CAS  Google Scholar 

  41. Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.

    Article  CAS  Google Scholar 

  42. Nishi, Y.; Dai, G. Z.; Iwashita, N.; Sawada, Y.; Inagaki, M. Evaluation of sorption behavior of heavy oil into exfoliated graphite by wicking test. J. Soc. Mater. Sci. Jpn. 2002, 51, 243–248.

    Article  Google Scholar 

  43. Ge, J.; Ye, Y. D.; Yao, H. B.; Zhu, X.; Wang, X.; Wu, L.; Wang, J. L.; Ding, H.; Yong, N.; He, L. H. et al. Pumping through porous hydrophobic/oleophilic materials: An alternative technology for oil spill remediation. Angew. Chem., Int. Ed. 2014, 53, 3612–3616.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged the funding support from the National Natural Science Foundation of China (Nos. 51732011, 21431006, 21761132008, 81788101, 11227901, and 21805188), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH036), the National Basic Research Program of China (No. 2014CB931800), the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007), Anhui Initiative in Quantum Information Technologies (No. AHY050000), and the Fundamental Research Funds for the Central Universities (No. WK6030000077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hong Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, LA., Ge, J., Hu, BC. et al. Joule-heated carbonized melamine sponge for high-speed absorption of viscous oil spills. Nano Res. 14, 2697–2702 (2021). https://doi.org/10.1007/s12274-020-3274-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3274-y

Keywords

Navigation