Skip to main content
Log in

Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Glucose-responsive insulin delivery systems show great promise to improve therapeutic outcomes and quality of life for people with diabetes. Herein, a new microneedle-array patch containing pH-sensitive insulin-loaded nanoparticles (NPs) (SNP(I)) together with glucose oxidase (GOx)- and catalase (CAT)-loaded pH-insensitive NPs (iSNP(G+C)) is constructed for transcutaneous glucose-responsive insulin delivery. SNP(I) are prepared via double emulsion from a pH-sensitive amphiphilic block copolymer, and undergo rapid dissociation to promote insulin release at a mild acidic environment induced by GOx in iSNP(G+C) under hyperglycemic conditions. CAT in iSNP(G+C) can further consume excess H2O2 generated during GOx oxidation, and thus reduce the risk of inflammation toward the normal skin. The in vivo study on type 1 diabetic mice demonstrates that the platform can effectively regulate blood glucose levels within normal ranges for a prolonged period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatterjee, S.; Khunti, K.; Davies, M. J. Type 2 diabetes. Lancet, 2017, 389, 2239–2251.

    Article  CAS  Google Scholar 

  2. Atkinson, M. A.; Eisenbarth, G. S.; Michels, A. W. Type 1 diabetes. Lancet, 2014, 383, 69–82.

    Article  Google Scholar 

  3. International Diabetes Federation. IDF Diabetes Atlas, 9th edition 2019 [Online]. Brussels, Belgium: Internationa Diabetes Federation, 2019. https://www.diabetesatlas.org (accessed Oct 10, 2020).

  4. Owens, D. R.; Zinman, B.; Bolli, G. B. Insulins today and beyond. Lancet, 2001, 358, 739–746.

    Article  CAS  Google Scholar 

  5. Bluestone, J. A.; Herold, K.; Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 2010, 464, 1293–1300.

    Article  CAS  Google Scholar 

  6. Karges, B.; Binder, E.; Rosenbauer, J. Complications with insulin pump therapy vs insulin injection therapy-reply. JAMA, 2018, 319, 503–504.

    Article  Google Scholar 

  7. Yeh, H. C.; Brown, T. T.; Maruthur, N.; Ranasinghe, P.; Berger, Z.; Suh, Y. D.; Wilson, L. M.; Haberl, E. B.; Brick, J.; Bass, E. B. et al. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis. Ann. Intern. Med., 2012, 157, 336–347.

    Article  Google Scholar 

  8. Writing Team for the Diabetes Control; Complications Trial/Epidemiology of Diabetes Interventions; Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: The epidemiology of diabetes interventions and complications (EDIC) study. JAMA, 2003, 290, 2159–2167.

    Article  Google Scholar 

  9. Donnelly, L. A.; Morris, A. D.; Frier, B. M.; Ellis, J. D.; Donnan, P. T.; Durrant, R.; Band, M. M.; Reekie, G.; Leese, G. P.; DARTS/MEMO Collaboration. Frequency and predictors of hypoglycaemia in Type 1 and insulin-treated Type 2 diabetes: A population-based study. Diabet. Med., 2005, 22, 749–755.

    Article  CAS  Google Scholar 

  10. Shen, D.; Yu, H. J.; Wang, L.; Khan, A.; Haq, F.; Chen, X.; Huang, Q.; Teng, L. S. Recent progress in design and preparation of glucose-responsive insulin delivery systems. J. Control. Release, 2020, 321, 236–258.

    Article  CAS  Google Scholar 

  11. Yu, J. C.; Zhang, Y. Q.; Yan, J. J.; Kahkoska, A. R.; Gu, Z. Advances in bioresponsive closed-loop drug delivery systems. Int. J. Pharm., 2018, 544, 350–357.

    Article  CAS  Google Scholar 

  12. Bakh, N. A.; Cortinas, A. B.; Weiss, M. A.; Langer, R. S.; Anderson, D. G.; Gu, Z.; Dutta, S.; Strano, M. S. Glucose-responsive insulin by molecular and physical design. Nat. Chem., 2017, 9, 937–944.

    Article  CAS  Google Scholar 

  13. Ravaine, V.; Ancla, C.; Catargi, B. Chemically controlled closed-loop insulin delivery. J. Control. Release, 2008, 132, 2–11.

    Article  CAS  Google Scholar 

  14. Jamaledin, R.; Makvandi, P.; Yiu, C. K. Y.; Agarwal, T.; Vecchione, R.; Sun, W. J.; Maiti, T. K.; Tay, F. R.; Netti, P. A. Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning. Adv. Ther., 2020, in press, https://doi.org/10.1002/adtp.202000171.

  15. Jamaledin, R.; Yiu, C. K. Y.; Zare, E. N.; Niu, L. N.; Vecchione, R.; Chen, G. J.; Gu, Z.; Tay, F. R.; Makvandi, P. Advances in antimicrobial microneedle patches for combating infections. Adv. Mater., 2020, 32, 2002129.

    Article  CAS  Google Scholar 

  16. Steil, G M.; Rebrin, K.; Darwin, C.; Hariri, F.; Saad, M. F. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes, 2006, 55, 3344–3350.

    Article  CAS  Google Scholar 

  17. Chen, X.; Wang, L.; Yu, H. J.; Li, C. J.; Feng, J. Y.; Haq, F.; Khan, A.; Khan, R. U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release, 2018, 288, 173–188.

    Article  CAS  Google Scholar 

  18. Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov., 2015, 14, 45–57.

    Article  CAS  Google Scholar 

  19. Weissberg-Benchell J.; Antisdel-Lomaglio J.; Seshadri R. Insulin pump therapy: A meta-analysis. Diabetes Care, 2003, 26, 1079–1087.

    Article  Google Scholar 

  20. Wang, J. Q.; Wang, Z. J.; Yu, J. C.; Kahkoska, A. R.; Buse, J. B.; Gu, Z. Glucose-responsive insulin and delivery systems: Innovation and translation. Adv. Mater., 2020, 32, 1902004.

    Article  CAS  Google Scholar 

  21. Zhang, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Wang, J. Q.; Buse, J. B.; Gu, Z. Advances in transdermal insulin delivery. Adv. Drug Deliv. Rev., 2019, 139, 51–70.

    Article  CAS  Google Scholar 

  22. Gordijo, C. R.; Koulajian, K.; Shuhendler, A. J.; Bonifacio, L. D.; Huang, H. Y.; Chiang, S.; Ozin, G. A.; Giacca, A.; Wu, X. Y. Nanotechnology-enabled closed loop insulin delivery device: In vitro and in vivo evaluation of glucose-regulated insulin release for diabetes control. Adv. Funct. Mater., 2011, 21, 73–82.

    Article  CAS  Google Scholar 

  23. Jin, X.; Zhu, D. D.; Chen, B. Z.; Ashfaq, M.; Guo, X. D. Insulin delivery systems combined with microneedle technology. Adv. Drug Deliv. Rev., 2018, 127, 119–137.

    Article  CAS  Google Scholar 

  24. Wu, Q.; Wang, L.; Yu, H. J.; Wang, J. J.; Chen, Z. F. Organization of glucose-responsive systems and their properties. Chem. Rev., 2011, 111, 7855–7875.

    Article  CAS  Google Scholar 

  25. Yu, J. C.; Zhang, Y. Q.; Wang, J. Q.; Wen, D.; Kahkoska, A. R.; Buse, J. B.; Gu, Z. Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Res., 2019, 12, 1539–1545.

    Article  CAS  Google Scholar 

  26. Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano, 2013, 7, 6758–6766.

    Article  CAS  Google Scholar 

  27. Gu, Z.; Aimetti, A. A.; Wang, Q.; Dang, T. T.; Zhang, Y. L.; Veiseh, O.; Cheng, H.; Langer, R. S.; Anderson, D. G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013, 7, 4194–4201.

    Article  CAS  Google Scholar 

  28. Podual, K.; Doyle, F. J.; Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly (ethylene glycol) grafts. J. Control. Release, 2000, 67, 9–17.

    Article  CAS  Google Scholar 

  29. Chou, D. H. C.; Webber, M. J.; Tang, B. C.; Lin, A. B.; Thapa, L. S.; Deng, D.; Truong, J. V.; Cortinas, A. B.; Langer, R.; Anderson, D. G. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. USA, 2015, 112, 2401–2406.

    Article  CAS  Google Scholar 

  30. Huang, Q.; Wang, L.; Yu, H. J.; Ur-Rahman, K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J. Control. Release, 2019, 305, 50–64.

    Article  CAS  Google Scholar 

  31. Yu, J. C.; Wang, J. Q.; Zhang, Y. Q.; Chen, G. J.; Mao, W. W.; Ye, Y. Q.; Kahkoska, A. R.; Buse, J. B.; Langer, R.; Gu, Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng., 2020, 4, 499–506.

    Article  CAS  Google Scholar 

  32. Matsumoto, A.; Tanaka, M.; Matsumoto, H.; Ochi, K.; Moro-oka, Y.; Kuwata, H.; Yamada, H.; Shirakawa, I.; Miyazawa, T.; Ishii, H. et al. Synthetic “smart gel” provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv., 2017, 3, eaaq0723.

    Article  CAS  Google Scholar 

  33. Matsumoto, A.; Ishii, T.; Nishida, J.; Matsumoto, H.; Kataoka, K.; Miyahara, Y. A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem, Int. Ed., 2012, 51, 2124–2128.

    Article  CAS  Google Scholar 

  34. Wu, S. S.; Huang, X.; Du, X. Z. Glucose-and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers. Angew. Chem., Int. Ed., 2013, 52, 5580–5584.

    Article  CAS  Google Scholar 

  35. Wang, J. Q.; Yu, J. C.; Zhang, Y. Q.; Zhang, X. D.; Kahkoska, A. R.; Chen, G. J.; Wang, Z. J.; Sun, W. J.; Cai, L. L.; Chen, Z. W. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv., 2019, 5, eaaw4357.

    Article  CAS  Google Scholar 

  36. Yu, J. C.; Zhang, Y. Q.; Sun, W. J.; Kahkoska, A. R.; Wang, J. Q.; Buse, J. B.; Gu, Z. Insulin-responsive glucagon delivery for prevention of hypoglycemia. Small, 2017, 13, 1603028.

    Article  CAS  Google Scholar 

  37. Wang, C.; Ye, Y. Q.; Sun, W. J.; Yu, J. C.; Wang, J. Q.; Lawrence, D. S.; Buse, J. B.; Gu, Z. Red blood cells for glucose-responsive insulin delivery. Adv. Mater., 2017, 29, 1606617.

    Article  CAS  Google Scholar 

  38. Wang, J. Q.; Yu, J. C.; Zhang, Y. Q.; Kahkoska, A. R.; Wang, Z. J.; Fang, J.; Whitelegge, J. P.; Li, S.; Buse, J. B.; Gu, Z. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl. Acad. Sci. USA, 2019, 116, 10744–10748.

    Article  CAS  Google Scholar 

  39. Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase-An overview. Biotechnol. Adv., 2009, 27, 489–501.

    Article  CAS  Google Scholar 

  40. Zhang, G. Y.; Ji, Y.; Li, X. L.; Wang, X. Y.; Song, M. M.; Gou, H. L.; Gao, S.; Jia, X. D. Polymer-covalent organic frameworks composites for glucose and pH dual-responsive insulin delivery in mice. Adv. Healthc. Mater., 2020, 9, 2000221.

    Article  CAS  Google Scholar 

  41. Zuo, M. Z.; Qian, W. R.; Xu, Z. Q.; Shao, W.; Hu, X. Y.; Zhang, D. M.; Jiang, J. L.; Sun, X. Q.; Wang, L. Y. Multiresponsive supramolecular theranostic nanoplatform based on pillar[5]arene and diphenylboronic acid derivatives for integrated glucose sensing and insulin delivery. Small, 2018, 14, 1801942.

    Article  CAS  Google Scholar 

  42. Hu, X. L.; Yu, J. C.; Qian, C. G; Lu, Y.; Kahkoska, A. R.; Xie, Z. G.; Jing, X. B.; Buse, J. B.; Gu, Z. H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery. ACS Nano, 2017, 11, 613–620.

    Article  CAS  Google Scholar 

  43. Zhang, Y. Q.; Wang, J. Q.; Yu, J. C.; Wen, D.; Kahkoska, A. R.; Lu, Y.; Zhang, X. D.; Buse, J. B.; Gu, Z. Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small, 2018, 14, 1704181.

    Article  CAS  Google Scholar 

  44. Wang, J. Q.; Ye, Y. Q.; Yu, J. C.; Kahkoska, A. R.; Zhang, X. D.; Wang, C.; Sun, W. J.; Corder, R. D.; Chen, Z. W.; Khan, S. A. et al. Core-shell microneedle gel for self-regulated insulin delivery. ACS Nano, 2018, 12, 2466–2473.

    Article  CAS  Google Scholar 

  45. Yu, J. C.; Zhang, Y. Q.; Ye, Y. Q.; DiSanto, R.; Sun, W. J.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl. Acad. Sci. USA, 2015, 112, 8260–8265.

    Article  CAS  Google Scholar 

  46. Yu, J. C.; Qian, C. G.; Zhang, Y. Q.; Cui, Z.; Zhu, Y.; Shen, Q. D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Hypoxia and H2O2 dual-sensitive vesicles for enhanced glucose-responsive insulin delivery. Nano Lett., 2017, 17, 733–739.

    Article  CAS  Google Scholar 

  47. Zhang, C.; Hong, S.; Liu, M. D.; Yu, W. Y.; Zhang, M. K.; Zhang, L.; Zeng, X.; Zhang, X. Z. pH-sensitive MOF integrated with glucose oxidase for glucose-responsive insulin delivery. J. Control. Release, 2020, 320, 159–167.

    Article  CAS  Google Scholar 

  48. Wu, W. T.; Mitra, N.; Yan, E. C. Y.; Zhou, S. Q. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano, 2010, 4, 4831–4839.

    Article  CAS  Google Scholar 

  49. Volpatti, L. R.; Matranga, M. A.; Cortinas, A. B.; Delcassian, D.; Daniel, K. B.; Langer, R.; Anderson, D. G. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano, 2020, 14, 488–497.

    Article  CAS  Google Scholar 

  50. Zhou, K. J.; Wang, Y. G.; Huang, X. N.; Luby-Phelps, K.; Sumer, B. D.; Gao, J. M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed., 2011, 50, 6109–6114.

    Article  CAS  Google Scholar 

  51. Loncar, N.; Fraaije, M. W. Catalases as biocatalysts in technical applications: current state and perspectives. Appl. Microbiol. Biotechnol., 2015, 99, 3351–3357.

    Article  CAS  Google Scholar 

  52. Chen, G. J.; Chen, Z. T.; Wen, D.; Wang, Z. J.; Li, H. J.; Zeng, Y.; Dotti, G.; Wirz, R. E.; Gu, Z. Transdermal cold atmospheric plasmamediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. USA, 2020, 117, 3687–3692.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2017YFA0205600), National Natural Science Foundation of China (Nos. 31771091 and 51922043), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2017A030306018), Guangdong Provincial Programs (Nos. 2017ZT07S054 and 2017GC010304), Outstanding Scholar Program of Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) (No. 2018GZR110102001), Guangdong Natural Science Foundation (No. 2018A030310285), Science and Technology Program of Guangzhou (Nos. 201902020018, 201804020060, and 201904010398), and Fundamental Research Funds for Central Universities, National Science Foundation (No. 1919285) and American Diabetes Association (No. 1-15-ACE-21).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Run Lin, Zhen Gu or Jin-Zhi Du.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, FQ., Chen, G., Xu, W. et al. Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Res. 14, 2689–2696 (2021). https://doi.org/10.1007/s12274-020-3273-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3273-z

Keywords

Navigation