Skip to main content
Log in

High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hazardous dye substances discharged from the textile and dyestuff industries not only threaten local the surrounding ecosystems but are also hard to degraded. We report the preparation of process for a photocatalytic membrane device that can degrade dye pollution under visible light. This filtration membrane, with a well-organized multilayer structure, simultaneously achieves continuous and flow-through separation of degradation products. Cellulose nanofibers (CNFs) were used as a template for nanosheet C3N4 (NS C3N4) preparation; the performance for the photocatalytic degradation of dyes improved as the morphology changed from bulking to nanosheet. NS C3N4 was then attached to the surface of a prepared CNF membrane via vacuum filtration. This device exhibited high efficiency (the degradation rates of both Rhodamine B and Methylene blue both reached 96%), high flux (above 160 L·h−1·m−2·bar−1) and excellent stability (maintaining steady flux and high separation were maintained after 4 h). This easy-preparation, easy-scale-up, and low-cost process provides a new method of fabricating photocatalytic membrane devices for dye wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bora, L. V.; Mewada, R. K. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew. Sust. Energ. Rev. 2017, 76, 1393–1421.

    Article  CAS  Google Scholar 

  2. Liu, P. T.; Liu, Y. G.; Ye, W. C.; Ma, J.; Gao, D. Q. Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 2016, 27, 225403.

    Article  Google Scholar 

  3. Saha, N.; Rahman, M. S.; Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W. S. Industrial metal pollution in water and probabilistic assessment of human health risk. J. Environ. Manage. 2017, 185, 70–78.

    Article  CAS  Google Scholar 

  4. Tabassum, S.; Zhang, Y. J.; Zhang, Z. J. An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge—A pilot study. J. Clean. Prod. 2015, 95, 148–155.

    Article  CAS  Google Scholar 

  5. Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.

    Article  CAS  Google Scholar 

  6. Wang, J. L.; Xu, L. J. Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325.

    Article  Google Scholar 

  7. Anwer, H.; Mahmood, A.; Lee, J.; Kim, K. H.; Park, J. W.; Yip, A. C. K. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano. Res. 2019, 12, 955–972.

    Article  CAS  Google Scholar 

  8. Guo, Y. R.; Liu, Q.; Li, Z. H.; Zhang, Z. G.; Fang, X. M. Enhanced photocatalytic hydrogen evolution performance of mesoporous graphitic carbon nitride Co-doped with potassium and iodine. Appl. Catal. B Environ. 2018, 221, 362–370.

    Article  CAS  Google Scholar 

  9. Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano. Res. 2019, 12, 2385–2389.

    Article  CAS  Google Scholar 

  10. Zhao, Z. W.; Sun, Y. J.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37.

    Article  CAS  Google Scholar 

  11. Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano. Res. 2018, 13, 18–37.

    Article  Google Scholar 

  12. Klemm, P.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem., Int. Ed. 2011, 50, 5438–5466.

    Article  CAS  Google Scholar 

  13. Yang, W. G.; Feng, Y. H.; He, H. Z.; Yang, Z. T. Environmentally-friendly extraction of cellulose nanofibers from steam-explosion pretreated sugar beet pulp. Materials 2018, 11, 1160.

    Article  Google Scholar 

  14. Lee, J.; Lim, M.; Yoon, J.; Kim, M. S.; Choi, B.; Kim, D. M.; Kim, D. H.; Park, I.; Choi, S. J. Transparent, flexible strain sensor based on a solution-processed carbon nanotube network. ACS Appl. Mater. Interfaces 2017, 9, 26279–26285.

    Article  CAS  Google Scholar 

  15. Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.

    Article  CAS  Google Scholar 

  16. Zhang, H. B.; An, P. F.; Zhou, W.; Guan, B. Y.; Zhang, P.; Dong, J. C.; Lou, X. W. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.

  17. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339.

    Article  CAS  Google Scholar 

  18. Li, H. T.; Li, N.; Wang, M.; Zhao, B. P.; Long, F. Synthesis of novel and stable g-C3N4-Bi3Wo6 hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation. R. Soc. Open Sci. 2018, 5, 171419.

    Article  Google Scholar 

  19. Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772.

    Article  CAS  Google Scholar 

  20. Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

    Article  CAS  Google Scholar 

  21. Qi, K. Z.; Xie, Y. B.; Wang, R. D.; Liu, S. Y.; Zhao, Z. Electroless plating Ni-P cocatalyst decorated g-C3N4 with enhanced photocatalytic water splitting for H2 generation. Appl. Surf. Sci. 2019, 466, 847–853.

    Article  CAS  Google Scholar 

  22. Lai, T. M.; Du, Z. W.; Chen, Y. G Abnormally large and small adhesion forces between plasma-treated silicon surfaces studied on AFM. J. Adhesion 2019, 1–23.

    Google Scholar 

  23. Li, R.; Ren, Y. L.; Zhao, P. X.; Wang, J.; Liu, J. D.; Zhang, Y. T. Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. J. Hazard. Mater. 2019, 365, 606–614.

    Article  CAS  Google Scholar 

  24. Shao, D. D.; Yang, W. J.; Xiao, H. F.; Wang, Z. Y.; Zhou, C.; Cao, X. L.; Sun, S. P. Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine. ACS Appl. Mater. Interfaces 2020, 12, 580–590.

    Article  CAS  Google Scholar 

  25. Wei, Y. B.; Zhu, Y. X.; Jiang, Y. J. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification. Chem. Eng. J. 2019, 356, 915–925.

    Article  CAS  Google Scholar 

  26. Ling, S. J.; Qin, Z.; Huang, W. W.; Cao, S. F.; Kaplan, D. L.; Buehler, M. J. Design and function of biomimetic multilayer water purification membranes. Sci. Adv. 2017, 3, e1601939.

    Article  Google Scholar 

  27. Ling, S. J.; Jin, K.; Kaplan, D. L.; Buehler, M. J. Ultrathin freestanding Bombyx mori silk nanofibril membranes. Nano Lett. 2016, 16, 3795–3800.

    Article  CAS  Google Scholar 

  28. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

    Article  CAS  Google Scholar 

  29. Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464.

    Article  CAS  Google Scholar 

  30. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

    Article  CAS  Google Scholar 

  31. Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem., Int. Ed. 2017, 56, 8974–8980.

    Article  CAS  Google Scholar 

  32. Li, F.; Yu, Z. X.; Shi, H.; Yang, Q. B.; Chen, Q.; Pan, Y.; Zeng, G. Y.; Yan, L. A mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation. Chem. Eng. J. 2017, 322, 33–45.

    Article  CAS  Google Scholar 

  33. Liu, Q. X.; Ai, L. H.; Jiang, J. Mxene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 2018, 6, 4102–4110.

    Article  CAS  Google Scholar 

  34. Yan, P. C.; She, X. J.; Zhu, X. W.; Xu, L.; Qian, J. C.; Xia, J. X.; Zhang, J. M.; Xu, H.; Li, H. N.; Li, H. M. Efficient photocatalytic hydrogen evolution by engineering amino groups into ultrathin 2D graphitic carbon nitride. Appl. Surf. Sci. 2020, 507, 145085.

    Article  CAS  Google Scholar 

  35. Tian, N.; Huang, H. W.; Du, X.; Dong, F.; Zhang, Y. H. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications. J. Mater. Chem. A 2019, 7, 11584–11612.

    Article  CAS  Google Scholar 

  36. Gan, X. R.; Lei, D. Y.; Ye, R. Q.; Zhao, H. M.; Wong, K. Y. Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano. Res. 2020, DOI: https://doi.org/10.1007/s12274-020-2955-x.

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2018YFC1902101), the National Natural Science Foundation of China (Nos. 21908127, 21838006, and 21776159), the project supported by the Foundation (No. KF201810) of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China and Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Wu.

Electronic Supplementary Material

12274_2020_3256_MOESM1_ESM.pdf

High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Meng, G., Fan, G. et al. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 14, 2568–2573 (2021). https://doi.org/10.1007/s12274-020-3256-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3256-0

Keywords

Navigation