Skip to main content
Log in

Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The construction of advanced electrode materials is key to the field of energy storage. Herein, a free-standing anatase titania (TiO2) nanocrystal/carbon nanotube (CNT) film is reported using a simple and scalable sol-gel method, followed by calcination. This unique free-standing film comprises ultra-small TiO2 nanocrystals (∼ 5.9 nm) and super-aligned CNTs, with ultra-dispersed TiO2 nanocrystals on the surfaces of the CNTs. On the one hand, these TiO2 nanocrystals can significantly decrease the diffusion distance of the charges and on the other hand, the cross-linked CNTs can act as a three-dimensional (3D) conductive network, allowing the fast transport of electrons. In addition, the film is free-standing, without requiring electrode fabrication and additional conductive agents and binders. Owing to these above synergistic effects, the film is directly used as an anode in Li-ion batteries, and delivers a high discharge capacity of ∼ 105 mAh·g−1 at high rate of 60 C (1 C = 170 mA·g−1) and excellent cycling performance over 2,500 cycles at 30 C. These results indicate that the free-standing anatase TiO2 nanocrystal/CNT film affords a superior performance among the various TiO2 materials and can be a promising anode material for fast-charging Li-ion batteries. Moreover, the TiO2/CNT film exhibits an areal capacity of up to 2.4 mAh·cm−2, confirming the possibility of its practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patel, P. Improving the lithium-ion battery. ACS Cent. Sci. 2015, 1, 161–162.

    CAS  Google Scholar 

  2. Bresser, D.; Hosoi, K.; Howell, D.; Li, H.; Zeisel, H.; Amine, K.; Passerini, S. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 2018, 382, 176–178.

    CAS  Google Scholar 

  3. Zhao, W. G.; Zheng, J. M.; Zou, L. F.; Jia, H. P.; Liu, B.; Wang, H.; Engelhard, M. H.; Wang, C. M.; Xu, W.; Yang, Y. et al. High voltage operation of Ni-rich NMC cathodes enabled by stable electrode/electrolyte interphases. Adv. Energy Mater. 2018, 8, 1800297.

    Google Scholar 

  4. Li, W. D.; Lee, S.; Manthiram, A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718.

    CAS  Google Scholar 

  5. Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

    CAS  Google Scholar 

  6. Tao, W.; Wang, P.; You, Y.; Park, K.; Wang, C. Y.; Li, Y. K.; Cao, F. F.; Xin, S. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res. 2019, 12, 1739–1749.

    CAS  Google Scholar 

  7. Wang, B.; Ryu, J.; Choi, S.; Zhang, X. H.; Pribat, D.; Li, X. L.; Zhi, L. J.; Park, S.; Ruoff, R. S. Ultrafast-charging silicon-based corallike network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 2019, 13, 2307–2315.

    CAS  Google Scholar 

  8. Zhu, K. L.; Li, Q.; Xue, Z. M.; Yu, Q.; Liu, X. C.; Shan, Z. Q.; Liu, K. Mesoporous TiO2 spheres as advanced anodes for low-cost, safe, and high-areal-capacity lithium-ion full batteries. ACS Appl. Nano Mater. 2020, 3, 1019–1027.

    CAS  Google Scholar 

  9. Li, N.; Zhou, G. M.; Fang, R. P.; Li, F.; Cheng, H. M. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. Nanoscale 2013, 5, 7780–7784.

    CAS  Google Scholar 

  10. Wang, D. H.; Choi, D.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G. et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.

    CAS  Google Scholar 

  11. Hwang, C. H.; Kim, H. E.; Nam, I.; Bang, J. H. Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries. Nano Res. 2019, 12, 897–904.

    CAS  Google Scholar 

  12. Wang, Q.; Shen, L.; Xue, T.; Cheng, G.; Huang, C. Z.; Fan, H. J.; Feng, Y. P. Single-crystalline TiO2(B) nanobelts with unusual large exposed {100} facets and enhanced Li-storage capacity. Adv. Funct. Mater. 2020, 2002187.

    Google Scholar 

  13. Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y. et al. Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for highperformance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303.

    CAS  Google Scholar 

  14. Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5852–5855.

    CAS  Google Scholar 

  15. Li, W.; Wang, F.; Liu, Y. P.; Wang, J. X.; Yang, J. P.; Zhang, L. J.; Elzatahry, A. A.; Al-Dahyan, D.; Xia, Y. Y.; Zhao, D. General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett. 2015, 15, 2186–2193.

    CAS  Google Scholar 

  16. Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.

    CAS  Google Scholar 

  17. Zhu, K. L.; Liu, X. Y.; Du, J. Y.; Tian, J. H.; Wang, Y.; Liu, S. Z.; Shan, Z. Q. In situ synthesis of mesoporous single-grain layer anatase TiO2 nanosheets without additives via a mild and simple process for a long-term Li-ion battery. J. Mater. Chem. A 2015, 3, 6455–6463.

    CAS  Google Scholar 

  18. Guan, B. Y.; Yu, L.; Li, J.; Lou, X. W. D. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci. Adv. 2016, 2, e1501554.

    Google Scholar 

  19. Zhu, K. L.; Sun, Y. H.; Wang, R. M.; Shan, Z. Q.; Liu, K. Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries. Sci. China Mater. 2017, 60, 304–314.

    CAS  Google Scholar 

  20. Yu, W. B.; Hu, Z. Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H. E.; Gao, H. X.; Mai, L. Q.; Hasan, T. et al. Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries. Natl. Sci. Rev. 2020, 7, 1046–1058.

    Google Scholar 

  21. Lee, D. H.; Lee, B. H.; Sinha, A. K.; Park, J. H.; Kim, M. S.; Park, J.; Shin, H.; Lee, K. S.; Sung, Y. E.; Hyeon, T. Engineering titanium dioxide nanostructures for enhanced lithium-ion storage. J. Am. Chem. Soc. 2018, 140, 16676–16684.

    CAS  Google Scholar 

  22. Wang, B. Y.; Yuan, W.; Zhang, X. M.; Xiang, M. W.; Zhang, Y.; Liu, H.; Wu, H. Sandwiching defect-Rich TiO2−δ nanocrystals into a three-dimensional flexible conformal carbon hybrid matrix for long-cycling and high-rate Li/Na-ion batteries. Inorg. Chem. 2019, 58, 8841–8853.

    CAS  Google Scholar 

  23. Modarres, M. H.; Engelke, S.; Jo, C.; Seveno, D.; De Volder, M. Self-assembly of hybrid nanorods for enhanced volumetric performance of nanoparticles in Li-ion batteries. Nano Lett. 2019, 19, 228–234.

    CAS  Google Scholar 

  24. Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.

    CAS  Google Scholar 

  25. Liu, S. H.; Wang, Z. Yu, C.; Wu, H. B.; Wang, G.; Dong, Q.; Qiu, J. S.; Eychmüller, A.; Lou, X. W. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life. Adv. Mater. 2013, 25, 3462–3467.

    CAS  Google Scholar 

  26. He, L. F.; Wang, C. D.; Yao, X. L.; Ma, R. G.; Wang, H. K.; Chen, P. R.; Zhang, K. Synthesis of carbon nanotube/mesoporous TiO2 coaxial nanocables with enhanced lithium ion battery performance. Carbon 2014, 75, 345–352.

    CAS  Google Scholar 

  27. Wang, D. D.; Shan, Z. Q.; Na, R.; Huang, W. L.; Tian, J. H. Solvothermal synthesis of hedgehog-like mesoporous rutile TiO2 with improved lithium storage properties. J. Power Sources 2017, 337, 11–17.

    CAS  Google Scholar 

  28. Zhang, G. Q.; Wu, H. B.; Song, T.; Paik, U.; Lou, X. W. TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew. Chem., Int. Ed. 2014, 53, 12590–12593.

    CAS  Google Scholar 

  29. Zhu, K. L.; Luo, Y. F.; Zhao, F.; Hou, J. W.; Wang, X. W.; Ma, H.; Wu, H.; Zhang, Y. G.; Jiang, K. L.; Fan, S. S. et al. Free-standing, binderfree titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426–3433.

    CAS  Google Scholar 

  30. Zhang, L. H.; Qin, X. Y.; Zhao, S. Q.; Wang, A.; Luo, J.; Wang, Z. L.; Kang, F. Y.; Lin, Z. Q.; Li, B. H. Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Adv. Mater. 2020, 32, 1908445.

    CAS  Google Scholar 

  31. Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nano-tube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.

    CAS  Google Scholar 

  32. Jiang, K. L.; Wang, J. P.; Li, Q. L.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

    CAS  Google Scholar 

  33. Sun, L.; Wang, D. T.; Luo, Y. F.; Wang, K.; Kong, W. B.; Wu, Y.; Zhang, L. N.; Jiang, K. L.; Li, Q. Q.; Zhang, Y. H. et al. Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano 2016, 10, 1300–1308.

    CAS  Google Scholar 

  34. Zhang, Y.; Franklin, N. W.; Chen, R. J.; Dai, H. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett. 2000, 331, 35–41.

    CAS  Google Scholar 

  35. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    CAS  Google Scholar 

  36. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    CAS  Google Scholar 

  37. Huang, F. M.; Yue, K. T.; Tan, P. H.; Zhang, S. L.; Shi, Z.; Zhou, X.; Gu, Z. Temperature dependence of the Raman spectra of carbon nanotubes. J. Appl. Phys. 1998, 84, 4022–4024.

    CAS  Google Scholar 

  38. Alhomoudi, I. A.; Newaz, G. Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 2009, 517, 4372–4378.

    CAS  Google Scholar 

  39. Zhu, K. L.; Tian, J. H.; Liu, Y. P.; Lin, N.; Tang, Q. W.; Yu, X. M.; Zhu, Y. M.; Shan, Z. Q. Submicron-sized mesoporous anatase TiO2 beads with a high specific surface synthesized by controlling reaction conditions for high-performance Li-batteries. RSC Adv. 2013, 3, 13149–13155.

    CAS  Google Scholar 

  40. Xing, Y. L.; Wang, S. B.; Fang, B. Z.; Song, G.; Wilkinson, D. P.; Zhang, S. C. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J. Power Sources 2018, 385, 10–17.

    CAS  Google Scholar 

  41. Zhang, C.; Liu, S. T.; Qi, Y. C.; Cui, F. M.; Yang, X. J. Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries. Chem. Eng. J. 2018, 351, 825–831.

    CAS  Google Scholar 

  42. Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575–3579.

    CAS  Google Scholar 

  43. Gao, M.; Bao, Y. B.; Qian, Y. X.; Deng, Y. F.; Li, Y. W.; Chen, G. H. Porous anatase-TiO2(B) dual-phase nanorods prepared from in situ pyrolysis of a single molecule precursor offer high performance lithium-ion storage. Inorg. Chem. 2018, 57, 12245–12254.

    CAS  Google Scholar 

  44. Luo, M.; Yu, X.; Zhao, W. X.; Xu, R. M.; Liu, Y.; Shen, H. Polymerpromoted synthesis of porous TiO2 nanofibers decorated with N-doped carbon by mechanical stirring for high-performance Li-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 35060–35068.

    CAS  Google Scholar 

  45. Zhou, T. F.; Zheng, Y.; Gao, H.; Min, S. D.; Li, S.; Liu, H. K.; Guo, Z. P. Surface engineering and design strategy for surface-amorphized TiO2@graphene hybrids for high power Li-ion battery electrodes. Adv. Sci. 2015, 2, 1500027.

    Google Scholar 

  46. Petkovich, N. D.; Rudisill, S. G.; Wilson, B. E.; Mukherjee, A.; Stein, A. Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorg. Chem. 2014, 53, 1100–1112.

    CAS  Google Scholar 

  47. Jo, M. S.; Park, G. D.; Kang, Y. C.; Cho, J. S. Design and synthesis of interconnected hierarchically porous anatase titanium dioxide nanofibers as high-rate and long-cycle-life anodes for lithium-ion batteries. Nanoscale 2018, 10, 13539–13547.

    CAS  Google Scholar 

  48. Wagemaker, M.; Borghols, W. J. H.; Mulder, F. M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 2007, 129, 4323–4327.

    CAS  Google Scholar 

  49. Borghols, W. J. H.; Lützenkirchen-Hecht, D.; Haake, U.; Van Eck, E. R. H.; Mulder, F. M.; Wagemaker, M. The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. Phys. Chem. Chem. Phys. 2009, 11, 5742–5748.

    CAS  Google Scholar 

  50. Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012, 4, 2526–2542.

    CAS  Google Scholar 

  51. Wang, S. B.; Guan, B. Y.; Yu, L.; Lou, X. W. Rational design of three-layered TiO2@Carbon@MoS2 hierarchical nanotubes for enhanced lithium storage. Adv. Mater. 2017, 29, 1702724.

    Google Scholar 

  52. Fang, Y. Z.; Hu, R.; Liu, B. Y.; Zhang, Y. Y.; Zhu, K.; Yan, J.; Ye, K.; Cheng, K.; Wang, G. L.; Cao, D. X. MXene-derived TiO2/reduced graphene oxide composite with an enhanced capacitive capacity for Li-ion and K-ion batteries. J. Mater. Chem. A 2019, 7, 5363–5372.

    CAS  Google Scholar 

  53. Deng, C. J.; Lau, M. L.; Ma, C. R.; Skinner, P.; Liu, Y. Z.; Xu, W. Q.; Zhou, H.; Zhang, X. H.; Wu, D.; Yin, Y. D. et al. A mechanistic study of mesoporous TiO2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries. J. Mater. Chem. A 2020, 8, 3333–3343.

    CAS  Google Scholar 

  54. Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (No. 2018YFA0208401), Basic Science Center Project of NSFC under grant No. 51788104, Scientific Research Foundation of Qufu Normal University (No. 613701), and Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. 2020AML04). We thank Dr. Bolun Wang for his kind help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunlei Zhu or Kai Liu.

Electronic Supplementary Material

12274_2020_3225_MOESM1_ESM.pdf

Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Li, C., Jiao, Y. et al. Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage. Nano Res. 14, 2301–2308 (2021). https://doi.org/10.1007/s12274-020-3225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3225-7

Keywords

Navigation