Skip to main content
Log in

Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient and robust noble-metal-free bifunctional electrocatalysts for overall water splitting (OWS) is of great importance to realize the large-scale hydrogen production. Herein, we report the growth of undoped and Cr-doped NiCo2O4 (Cr-NiCo2O4) nanoneedles (NNs) on nickel foam (NF) as bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We demonstrate that Cr-doping significantly improves activity for HER and OER by increasing the conductivity of NNs and allowing more active sites on NNs electrochemically accessible. When amorphous FeOOH is electrodeposited on the surface of Cr-NiCo2O4 NNs, the resulting FeOOH/Cr-NiCo2O4/NF exhibits itself as an excellent bifunctional catalyst for OWS. In the two-electrode cell where FeOOH/Cr-NiCo2O4/NF is used both as cathode and anode for OWS, a cell voltage of only 1.65 V is required to achieve an electrolysis current density of 100 mA·cm−2. In addition, the catalyst shows a very high stability for OWS, the two-electrode cell can operate at a consist current density of 20 mA·cm−2 for 10 h OWS with the cell voltage being stable at ca. 1.60 V. These results demonstrate that FeOOH/Cr-NiCo2O4/NF possesses an OWS performance superior to most of transition-metal based bifunctional electrocatalysts working in alkaline medium. The excellent bifunctional activity and stability of FeOOH/Cr-NiCo2O4/NF are attributed to the following reasons: (i) The NN structure provides a large specific surface area; (ii) the high conductivity of Cr-NiCo2O4 enables more active centers on the far-end part of NNs to be electrochemically reached; (iii) the deposition of FeOOH supplies additional active sites for OWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinberg, M. Fossil fuel decarbonization technology for mitigating global warming. Int. J. Hydrogen Energy 1999, 24, 771–777.

    CAS  Google Scholar 

  2. Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 51, 39–44.

    Google Scholar 

  3. Gasteiger, H. A.; Marković, N. M. Just a dream-Or future reality? Science 2009, 324, 48–49.

    CAS  Google Scholar 

  4. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    CAS  Google Scholar 

  5. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    CAS  Google Scholar 

  6. Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

    CAS  Google Scholar 

  7. You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

    CAS  Google Scholar 

  8. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    CAS  Google Scholar 

  9. Gandía, L. M.; Oroz, R.; Ursúa, A.; Sanchis, P.; Diéguez, P. M. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions. Energy Fuels 2007, 21, 1699–1706.

    Google Scholar 

  10. Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

    CAS  Google Scholar 

  11. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

    CAS  Google Scholar 

  12. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347–4357.

    CAS  Google Scholar 

  13. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    CAS  Google Scholar 

  14. Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

    CAS  Google Scholar 

  15. Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243–7254.

    CAS  Google Scholar 

  16. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    CAS  Google Scholar 

  17. Vojvodic, A.; Norskov, J. K.; Abild-Pedersen, F. Electronic structure effects in transition metal surface chemistry. Top. Catal. 2014, 57, 25–32.

    CAS  Google Scholar 

  18. Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.

    CAS  Google Scholar 

  19. Zhang, J.; Dong, C. Q.; Wang, Z. B.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst. Small Methods 2019, 3, 1800286.

    Google Scholar 

  20. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    CAS  Google Scholar 

  21. Zhang, J.; Bai, Y. W.; Zhang, C.; Gao, H.; Niu, J. Z.; Shi, Y. J.; Zhang, Y.; Song, M. J.; Zhang, Z. H. Hybrid Ni(OH)2/FeOOH@NiFe nanosheet catalysts toward highly efficient oxygen evolution reaction with ultralong stability over 1000 hours. ACS Sustainable Chem. Eng. 2019, 7, 14601–14610.

    CAS  Google Scholar 

  22. Liu, T. Y.; Diao, P.; Lin, Z.; Wang, H. L. Sulfur and selenium doped nickel chalcogenides as efficient and stable electrocatalysts for hydrogen evolution reaction: The importance of the dopant atoms in and beneath the surface. Nano Energy 2020, 74, 104787.

    CAS  Google Scholar 

  23. Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    CAS  Google Scholar 

  24. Zhang, X. Y.; Zhang, S.; Li, J.; Wang, E. K. One-step synthesis of well-structured NiS-Ni2P2S6 nanosheets on nickel foam for efficient overall water splitting. J. Mater. Chem. A 2017, 5, 22131–22136.

    CAS  Google Scholar 

  25. Ansovini, D.; Jun Lee, C. J.; Chua, C. S.; Ong, L. T.; Tan, H. R.; Webb, W. R.; Raja, R.; Lim, Y. F. A highly active hydrogen evolution electrocatalyst based on a cobalt-nickel sulfide composite electrode. J. Mater. Chem. A 2016, 4, 9744–9749.

    CAS  Google Scholar 

  26. Xue, N.; Lin, Z.; Li, P. K.; Diao, P.; Zhang, Q. F. Sulfur-doped CoSe2 porous nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 28288–28297.

    CAS  Google Scholar 

  27. Alexander, A. M.; Hargreaves, J. S. J. Alternative catalytic materials: Carbides, nitrides, phosphides and amorphous boron alloys. Chem. Soc. Rev. 2010, 39, 4388–4401.

    CAS  Google Scholar 

  28. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

    CAS  Google Scholar 

  29. Schalenbach, M.; Tjarks, G.; Carmo, M.; Lueke, W.; Mueller, M.; Stolten, D. Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis. J. Electrochem. Soc. 2016, 163, F3197–F3208.

    CAS  Google Scholar 

  30. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    CAS  Google Scholar 

  31. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    CAS  Google Scholar 

  32. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

    CAS  Google Scholar 

  33. Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479–6482.

    CAS  Google Scholar 

  34. An, L.; Huang, L.; Zhou, P. P.; Yin, J.; Liu, H. Y.; Xi, P. X. A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv. Funct. Mater. 2015, 25, 6814–6822.

    CAS  Google Scholar 

  35. Shao, Y. B.; Zheng, M. Y.; Cai, M. M.; He, L.; Xu, C. L. Improved electrocatalytic performance of core-shell NiCo/NiCoO, with amorphous FeOOH for oxygen-evolution reaction. Electrochim. Acta 2017, 257, 1–8.

    CAS  Google Scholar 

  36. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.

    CAS  Google Scholar 

  37. Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 2015, 5, 5380–5387.

    CAS  Google Scholar 

  38. Elakkiya, R.; Ramkumar, R.; Maduraiveeran, G. Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting. Mater. Res. Bull. 2019, 116, 98–105.

    CAS  Google Scholar 

  39. Yin, J.; Zhou, P. P.; An, L.; Huang, L.; Shao, C. W.; Wang, J.; Liu, H. Y.; Xi, P. X. Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting. Nanoscale 2016, 8, 1390–1400.

    CAS  Google Scholar 

  40. Xiao, C. L.; Li, Y. B.; Lu, X. Y.; Zhao, C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515–3523.

    CAS  Google Scholar 

  41. Wang, L.; Lin, C.; Zhang, F. X.; Jin, J. Phase transformation guided single-layer β-Co(OH)2 nanosheets for pseudocapacitive electrodes. ACS Nano 2014, 8, 3724–3734.

    CAS  Google Scholar 

  42. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

    CAS  Google Scholar 

  43. Wang, Z. C.; Liu, H. L.; Ge, R. X.; Ren, X.; Ren, J.; Yang, D. J.; Zhang, L. X.; Sun, X. P. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236–2241.

    CAS  Google Scholar 

  44. Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

    Google Scholar 

  45. Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

    Google Scholar 

  46. Xue, N.; Diao, P. Composite of few-layered MoS2 grown on carbon black: Tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction. J. Phys. Chem. C 2017, 121, 14413–14425.

    CAS  Google Scholar 

  47. Bo, X.; Li, Y. B.; Hocking, R. K.; Zhao, C. NiFeCr hydroxide holey nanosheet as advanced electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2017, 9, 41239–41245.

    CAS  Google Scholar 

  48. Gong, M.; Zhou, W.; Kenney, M. J.; Kapusta, R.; Cowley, S.; Wu, Y. P.; Lu, B. A.; Lin, M. C.; Wang, D. Y.; Yang, J. et al. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting. Angew. Chem., Int. Ed. 2015, 54, 11989–11993.

    CAS  Google Scholar 

  49. Ye, W.; Fang, X. Y.; Chen, X. B.; Yan, D. P. A three-dimensional nickel-chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale 2018, 10, 19484–19491.

    CAS  Google Scholar 

  50. Yang, Y.; Dang, L. N.; Shearer, M. J.; Sheng, H. Y.; Li, W. J.; Chen, J.; Xiao, P.; Zhang, Y. H.; Hamers, R. J.; Jin, S. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energ. Mater. 2018, 8, 1703189.

    Google Scholar 

  51. Dong, C. L.; Yuan, X. T.; Wang, X.; Liu, X. Y.; Dong, W. J.; Wang, R. Q.; Duan, Y. H.; Huang, F. Q. Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 2016, 4, 11292–11298.

    CAS  Google Scholar 

  52. Zhang, L.; Li, Y. Y.; Peng, J. H.; Peng, K. Bifunctional NiCo2O4 porous nanotubes electrocatalyst for overall water-splitting. Electrochim. Acta 2019, 318, 762–769.

    CAS  Google Scholar 

  53. Pope, C. G. X-ray diffraction and the Bragg equation. J. Chem. Educ. 1997, 74, 129.

    CAS  Google Scholar 

  54. Seabold, J. A.; Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186–2192.

    CAS  Google Scholar 

  55. Gao, X. H.; Zhang, H. X.; Li, Q. G.; Yu, X. G.; Hong, Z. L.; Zhang, X. W.; Liang, C. D.; Lin, Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290–6294.

    CAS  Google Scholar 

  56. Peng, S. J.; Gong, F.; Li, L. L.; Yu, D. S.; Ji, D. X.; Zhang, T. R.; Hu, Z.; Zhang, Z. Q.; Chou, S. L.; Du, Y. H. et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644–13653.

    CAS  Google Scholar 

  57. Ha, Y.; Shi, L. X.; Yan, X. X.; Chen, Z. L.; Li, Y. P.; Xu, W.; Wu, R. B. Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C Nanonetwork. ACS Appl. Mater. Interfaces 2019, 11, 45546–45553.

    CAS  Google Scholar 

  58. Deng, J.; Zhang, H. J.; Zhang, Y.; Luo, P.; Liu, L.; Wang, Y. Striking hierarchical urchin-like peapoded NiCo2O4@C as advanced bifunctional electrocatalyst for overall water splitting. J. Power Sources 2017, 372, 46–53.

    CAS  Google Scholar 

  59. Wang, L. Y.; Gu, C. D.; Ge, X.; Zhang, J. L.; Zhu, H. Y.; Tu, J. P. A NiCo2O4 shell on a hollow Ni Nanorod array core for water splitting with enhanced electrocatalytic performance. ChemNanoMat 2018, 4, 124–131.

    CAS  Google Scholar 

  60. Zhang, B.; Zhang, X. M.; Wei, Y.; Xia, L.; Pi, C. R.; Song, H.; Zheng, Y.; Gao, B.; Fu, J. J.; Chu, P. K. General synthesis of NiCo alloy nanochain arrays with thin oxide coating: A highly efficient bifunctional electrocatalyst for overall water splitting. J. Alloy. Compd. 2019, 797, 1216–1223.

    CAS  Google Scholar 

  61. Liu, W. X.; Yu, L. H.; Yin, R. L.; Xu, X. L.; Feng, J. X.; Jiang, X.; Zheng, D.; Gao, X. L.; Gao, X. B.; Que, W. B. et al. Non-3d metal modulation of a 2D Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting. Small 2020, 16, 1906775.

    CAS  Google Scholar 

  62. Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energ. Mater. 2015, 5, 1402031.

    Google Scholar 

  63. Du, X. Q.; Fu, J. P.; Zhang, X. S. NiCo2O4@NiMoO4 supported on nickel foam for electrocatalytic water splitting. ChemCatChem 2018, 10, 5533–5540.

    CAS  Google Scholar 

  64. Zhao, D. P.; Dai, M. Z.; Liu, H. Q.; Chen, K. F.; Zhu, X. F.; Xue, D. F.; Wu, X.; Liu, J. P. Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces 2019, 6, 1901308.

    CAS  Google Scholar 

  65. Wang, Z. Q.; Zeng, S.; Liu, W. H.; Wang, X. W.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 1488–1495.

    CAS  Google Scholar 

  66. Li, M.; Tao, L. M.; Xiao, X.; Lv, X. W.; Jiang, X. X.; Wang, M. K.; Peng, Z. Q.; Shen, Y. Core-shell structured NiCo2O4@FeOOH nanowire arrays as bifunctional electrocatalysts for efficient overall water splitting. ChemCatChem 2018, 10, 4119–4125.

    CAS  Google Scholar 

  67. Ren, J. T.; Yuan, G. G.; Weng, C. C.; Chen, L.; Yuan, Z. Y. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 2018, 10, 10620–10628.

    CAS  Google Scholar 

  68. Liu, D. N.; Lu, Q.; Luo, Y. L.; Sun, X. P.; Asiri, A. M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 2015, 7, 15122–15126.

    CAS  Google Scholar 

  69. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    CAS  Google Scholar 

  70. Roffi, T. M.; Uchida, K.; Nozaki, S. Structural, electrical, and optical properties of CoxNi1−xO films grown by metalorganic chemical vapor deposition. J. Cryst. Growth 2015, 414, 123–129.

    CAS  Google Scholar 

  71. Venkatesh, R.; Dhas, C. R.; Sivakumar, R.; Dhandayuthapani, T.; Sudhagar, P.; Sanjeeviraja, C.; Raj, A. M. E. Analysis of optical dispersion parameters and electrochromic properties of manganese-doped Co3O4 dendrite structured thin films. J. Phys. Chem. Solids 2018, 122, 118–129.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (Nos. 51872015 and 51672017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Diao.

Electronic Supplementary Material

12274_2020_3006_MOESM1_ESM.pdf

Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 13, 3299–3309 (2020). https://doi.org/10.1007/s12274-020-3006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3006-3

Keywords

Navigation