Skip to main content
Log in

Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom site (SA) catalysts on N-doped carbon (CN) materials exhibit prominent performance for their active sites being M-Nx. Due to the commonly random doping behaviors of N species in these CN, it is a tough issue to finely regulate their doping types and clarify their effect on the catalytic property of such catalysts. Herein, we report that the N-doping type in CN can be dominated as pyrrolic-N and pyridinic-N respectively through compounding with different metal oxides. It is found that the proportion of distinct doped N species in CN depends on the acidity and basicity of compounded metal oxide host. Owing to the coordination by pyrrolic-N, the SA Cu catalyst displays an enhanced activity (two-fold) for transfer hydrogenation of quinoline to access the valuable molecule tetrahydroquinoline with a good selectivity (99%) under mild conditions. The higher electron density of SA Cu species induced by the predominate pyrrolic-N coordination benefits the hydrogen transfer process and reduces the energy barrier of the hydrogenation pathway, which accounts for the improved catalytic effeciency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Google Scholar 

  2. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    CAS  Google Scholar 

  3. Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

    CAS  Google Scholar 

  4. Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

    CAS  Google Scholar 

  5. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, DOI: https://doi.org/10.1007/s40843-020-1443-8.

  6. Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725–737.

    CAS  Google Scholar 

  7. Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

    Google Scholar 

  8. Podyacheva, O. Y.; Bulushev, D. A.; Suboch, A. N.; Svintsitskiy, D. A.; Lisitsyn, A. S.; Modin, E.; Chuvilin, A.; Gerasimov, E. Y.; Sobolev, V. I.; Parmon, V. N. Highly stable single-atom catalyst with ionic Pd active sites supported on N-doped carbon nanotubes for formic acid decomposition. ChemSusChem 2018, 11, 3724–3727.

    CAS  Google Scholar 

  9. Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265–11269.

    Google Scholar 

  10. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 singleatom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    CAS  Google Scholar 

  11. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    CAS  Google Scholar 

  12. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  13. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  14. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

    CAS  Google Scholar 

  15. Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H. G.; Wang, H. L.; Dai, L. M. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 2016, 29, 83–110.

    CAS  Google Scholar 

  16. Zhu, C. Z.; Fu, S. F.; Song, J. H.; Shi, Q. R.; Su, D.; Engelhard, M. H.; Li, X. L.; Xiao, D. D.; Li, D. S.; Estevez, L. et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407.

    Google Scholar 

  17. Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

    Google Scholar 

  18. Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of singleatom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

    CAS  Google Scholar 

  19. Büchele, S.; Chen, Z. P.; Mitchell, S.; Hauert, R.; Krumeich, F.; P;ume-Ramírez, J. Tailoring nitrogen-doped carbons as hosts for single-atom catalysts. ChemCatChem 2019, 11, 2812–2820.

    Google Scholar 

  20. Jin, J. Y.; Wang, Z. W.; Wang, R.; Wang, J. J.; Huang, Z. D.; Ma, Y. W.; Li, H.; Wei, S. H.; Huang, X.; Yan, J. X. et al. Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping. Adv. Funct. Mater. 2019, 29, 1807441.

    Google Scholar 

  21. Zhao, R.; Peng, H.; Wang, H. L.; Liang, J.; Lv, Y. Y.; Ma, G. F.; Lei, Z. Q. Tuning nitrogen doping types and pore structures in carbon nanosheets as electrodes for supercapacitor by controlling existence form of iron species. J. Energy Storage 2020, 28, 101174.

    Google Scholar 

  22. Scott, J. D.; Williams, R. M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 2002, 102, 1669–1730.

    CAS  Google Scholar 

  23. Sridharan, V.; Suryavanshi, P. A.; Menendez, J. C. Advances in the chemistry of tetrahydroquinolines. Chem Rev. 2011, 111, 7157–7259.

    CAS  Google Scholar 

  24. Katritzky, A. R.; Rachwal, S.; Rachwal, B. Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines. Tetrahedron 1996, 52, 15031–15070.

    CAS  Google Scholar 

  25. Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Asymmetric hydrogenation of heteroarenes and arenes. Chem Rev 2012, 112, 2557–2590.

    CAS  Google Scholar 

  26. Wang, C.; Li, C. Q.; Wu, X. F.; Pettman, A.; Xiao, J. L. pH-regulated asymmetric transfer hydrogenation of quinolines in water. Angew. Chem., Int. Ed. 2009, 48, 6524–6528.

    CAS  Google Scholar 

  27. Chen, F.; Sahoo, B.; Kreyenschulte, C.; Lund, H.; Zeng, M.; He, L.; Junge, K.; Beller, M. Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chem. Sci. 2017, 8, 6239–6246.

    CAS  Google Scholar 

  28. Wei, Z. Z.; Chen, Y. Q.; Wang, J.; Su, D. F.; Tang, M. H.; Mao, S. J.; Wang, Y. Cobalt encapsulated in N-doped graphene layers: An efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 2016, 6, 5816–5822.

    CAS  Google Scholar 

  29. Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci Adv 2019, 5, eaax6322.

    CAS  Google Scholar 

  30. Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592–17598.

    CAS  Google Scholar 

  31. Li, J. L.; Liu, G. L.; Long, X. D.; Gao, G.; Wu, J.; Li, F. W. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. J. Catal. 2017, 355, 53–62.

    CAS  Google Scholar 

  32. Beckers, N. A.; Huynh, S.; Zhang, X. J.; Luber, E. J.; Buriak, J. M. Screening of heterogeneous multimetallic nanoparticle catalysts supported on metal oxides for mono-, poly-, and heteroaromatic hydrogenation activity. ACS Catal. 2012, 2, 1524–1534.

    CAS  Google Scholar 

  33. Bai, L. C.; Wang, X.; Chen, Q.; Ye, Y. F.; Zheng, H. Q.; Guo, J. H.; Yin, Y. D.; Gao, C. B. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew. Chem., Int. Ed. 2016, 55, 15656–15661.

    CAS  Google Scholar 

  34. Sorribes, I.; Liu, L. C.; Doménech-Carbó, A.; Corma, A. Nanolayered cobalt-molybdenum sulfides as highly chemo- and regioselective catalysts for the hydrogenation of quinoline derivatives. ACS Catal. 2018, 8, 4545–4557.

    CAS  Google Scholar 

  35. Mou, S. Y.; Lu, Y.; Jiang, Y. A facile and cheap coating method to prepare SiO2/melamine-formaldehyde and SiO2/urea-formaldehyde composite microspheres. Appl. Surf. Sci. 2016, 384, 258–262.

    CAS  Google Scholar 

  36. Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

    CAS  Google Scholar 

  37. Jeon, Y.; Lu, F.; Jhans, H.; Shaheen, S. A.; Liang, G.; Croft, M.; Ansari, P. H.; Ramanujachary, K. V; Hayri, E. A.; Fine, S. M. et al. X-ray absorption measurements on high-Tc superconductors: Cu-valence and cation-bond-length effects. Phys. Rev. B 1987, 36, 3891–3894.

    CAS  Google Scholar 

  38. Yu, M. Z.; Zhou, S.; Liu, Y.; Wang, Z. Y.; Zhou, T.; Zhao, J. J.; Zhao, Z. B.; Qiu, J. S. Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst. Sci. China Mater. 2017, 60, 415–426.

    Google Scholar 

  39. Zhong, H. X.; Zhang, H. M.; Liu, S. S.; Deng, C. W.; Wang, M. R. Nitrogen-enriched carbon from melamine resins with superior oxygen reduction reaction activity. ChemSusChem 2013, 6, 807–812.

    CAS  Google Scholar 

  40. Korytiaková, E.; Thiel, N. O.; Pape, F.; Teichert, J. F. Copper(I)-catalysed transfer hydrogenations with ammonia borane. Chem. Commun. 2017, 53, 732–735.

    Google Scholar 

  41. Zhao, T. J.; Zhang, Y. N.; Wang, K. X.; Su, J.; Wei, X.; Li, X. H. General transfer hydrogenation by activating ammonia-borane over cobalt nanoparticles. RSC Adv. 2015, 5, 102736–102740.

    CAS  Google Scholar 

  42. Vasilikogiannaki, E.; Titilas, I.; Vassilikogiannakis, G.; Stratakis, M. Cis-semihydrogenation of alkynes with amine borane complexes catalyzed by gold nanoparticles under mild conditions. Chem. Commun. 2015, 51, 2384–2387.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0702003 and 2016YFA0202801), the National Natural Science Foundation of China (Nos. 21890383, 21671117, 21871159, and 21901135), the National Postdoctoral Program for Innovative Talents, the Shuimu Tsinghua Scholar, Science and Technology Key Project of Guangdong Province of China (No. 2020B010188002), and Beijing Municipal Science & Technology Commission (No. Z191100007219003). We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF) and 1W1B station for XAFS measurement in Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingsheng Wang or Yadong Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zheng, C., Zhang, M. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 13, 3082–3087 (2020). https://doi.org/10.1007/s12274-020-2977-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2977-4

Keywords

Navigation