Skip to main content
Log in

Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Effective utilization of abundant solar energy for desalination of seawater and purification of wastewater is one of sustainable techniques for production of clean water, helping relieve global water resource shortage. Herein, we fabricate a vertically aligned reduced graphene oxide/Ti3C2Tx MXene (A-RGO/MX) hybrid hydrogel with aligned channels as an independent solar steam generation device for highly efficient solar steam generation. The vertically aligned channels, generated by a liquid nitrogen-assisted directional-freezing process, not only rapidly transport water upward to the evaporation surface for efficient solar steam generation, but also facilitate multiple reflections of solar light inside the channels for efficient solar light absorption. The deliberate slight reduction endows the RGO with plenty of polar groups, decreasing the water vaporization enthalpy effectively and hence accelerating water evaporation efficiently. The MXene sheets, infiltrated inside the A-RGO hydrogel on the basis of Marangoni effect, enhance light absorption capacity and photothermal conversion performance. As a result, the A-RGO/MX hybrid hydrogel achieves a water evaporation rate of 2.09 kg·m−2·h−1 with a high conversion efficiency of 93.5% under 1-sun irradiation. Additionally, this photothermal conversion hydrogel rapidly desalinates seawater and purifies wastewater to generate clean water with outstanding ion rejection rates of above 99% for most ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362–371.

    Google Scholar 

  2. Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 2017, 9, 7675–7681.

    CAS  Google Scholar 

  3. Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Kuang, Y. D.; Song, J. W.; Jia, C.; Hitz, E. M.; Yang, B.; Hu, L. B. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 2017, 41, 201–209.

    CAS  Google Scholar 

  4. Ghafurian, M. M.; Niazmand, H.; Ebrahimnia-Bajestan, E.; Taylor, R. A. Wood surface treatment techniques for enhanced solar steam generation. Renew. Energy 2020, 146, 2308–2315.

    CAS  Google Scholar 

  5. Gong, F.; Li, H.; Wang, W. B.; Huang, J. G.; Xia, D. W.; Liao, J. X.; Wu, M. Q.; Papavassiliou, D. V. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 2019, 58, 322–330.

    CAS  Google Scholar 

  6. Hashemi, M. R.; Neill, S. P.; Robins, P. E.; Davies, A. G.; Lewis, M. J. Effect of waves on the tidal energy resource at a planned tidal stream array. Renew. Energy 2015, 75, 626–639.

    Google Scholar 

  7. Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

    CAS  Google Scholar 

  8. Xu, W. C.; Hu, X. Z.; Zhuang, S. D.; Wang, Y. X.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 2018, 8, 1702884.

    Google Scholar 

  9. Lou, J. W.; Liu, Y.; Wang, Z. Y.; Zhao, D. W.; Song, C. Y.; Wu, J. B.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P. et al. Bioinspired multifunctional paper-based RGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 2016, 8, 14628–14636.

    CAS  Google Scholar 

  10. He, J. X.; Zhao, G H.; Mu, P.; Wei, H. J.; Su, Y. N.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 201, 110111.

    CAS  Google Scholar 

  11. Sun, Y.; Gao, J. P.; Liu, Y.; Kang, H. Y.; Xie, M. H.; Wu, F. M.; Qiu, H. X. Copper sulfide-macroporous polyacrylamide hydrogel for solar steam generation. Chem. Eng. Sci. 2019, 207, 516–526.

    CAS  Google Scholar 

  12. Tian, L. M.; Luan, J. Y.; Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Gupta, M. K.; Naik, R. R. Singamaneni, S. Plasmonic biofoam: A versatile optically active material. Nano Lett. 2016, 16, 609–616.

    CAS  Google Scholar 

  13. Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

    CAS  Google Scholar 

  14. Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517.

    Google Scholar 

  15. Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302–4307.

    CAS  Google Scholar 

  16. Liu, J.; Liu, Q. L.; Ma, D. L.; Yuan, Y.; Yao, J. H.; Zhang, W.; Su, H. L.; Su, Y. S.; Gu, J. J.; Zhang, D. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation. J. Mater. Chem. A 2019, 7, 9034–9039.

    CAS  Google Scholar 

  17. Jung, H. S.; Han, J. Y.; Lee, J. H.; Lee, J. H.; Choi, J. M.; Kweon, H. S.; Han, J. H.; Kim, J. H.; Byun, K. M.; Jung, J. H. et al. Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J. Am. Chem. Soc. 2015, 137, 3017–3023.

    CAS  Google Scholar 

  18. Wang, W. L.; Niu, J. F.; Guo, J. Y.; Yin, L. F.; Huang, H. M. In situ synthesis of PPy-FexOy-CTS nanostructured gel membrane for highly efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 201, 110046.

    CAS  Google Scholar 

  19. Yin, X. Y.; Zhang, Y.; Guo, Q. Q.; Cai, X. B.; Xiao, J. F.; Ding, Z. F.; Yang, J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl. Mater. Interfaces 2018, 10, 10998–11007.

    CAS  Google Scholar 

  20. Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953–13958.

    CAS  Google Scholar 

  21. Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

    Google Scholar 

  22. Xu, Z.; Liu, Y. J.; Zhao, X. L.; Peng, L.; Sun, H. Y.; Xu, Y.; Ren, X. B.; Jin, C. H.; Xu, P.; Wang, M. et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456.

    CAS  Google Scholar 

  23. Huang, R. L.; Huang, M. L.; Li, X. F.; An, F.; Koratkar, N.; Yu, Z. Z. Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv. Mater. 2018, 30, 1707025.

    Google Scholar 

  24. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  25. Yue, Y.; Liu, N. S.; Ma, Y. N.; Wang, S. L.; Liu, W. J.; Luo, C.; Zhang, H.; Cheng, F.; Rao, J. Y.; Hu, X. K. et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 2018, 12, 4224–4232.

    CAS  Google Scholar 

  26. Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.

    Google Scholar 

  27. Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.

    Google Scholar 

  28. Zhao, J. Q.; Yang, Y. W.; Yang, C. H.; Tian, Y. P.; Han, Y.; Liu, J.; Yin, X. T.; Que, W. Q. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 2018, 6, 16196–16204.

    CAS  Google Scholar 

  29. Zhao, X.; Zha, X. J.; Pu, J. H.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 2019, 7, 10446–10455.

    CAS  Google Scholar 

  30. Zha, X. J.; Zhao, X.; Pu, J. H.; Tang, L. S.; Ke, K.; Bao, R. Y.; Bai, L.; Liu, Z. Y.; Yang, M. B.; Yang, W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 2019, 11, 36589–36597.

    CAS  Google Scholar 

  31. Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

    CAS  Google Scholar 

  32. Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 2018, 6, 15303–15309.

    CAS  Google Scholar 

  33. Zhao, X.; Peng, L. M.; Tang, C. Y.; Pu, J. H.; Zha, X. J.; Ke, K.; Bao, R. Y.; Yang, M. B.; Yang, W. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electrothermal conversion by MXene-based aerogels. Mater. Horiz. 2020, 7, 855–865.

    CAS  Google Scholar 

  34. Ju, M. M.; Yang, Y. W.; Zhao, J. Q.; Yin, X. T.; Wu, Y. T.; Que, W. X. Macroporous 3D MXene architecture for solar-driven interfacial water evaporation. J. Adv. Dielect. 2019, 9, 1950047.

    CAS  Google Scholar 

  35. Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093.

    CAS  Google Scholar 

  36. Zhang, Q.; Yi, G.; Fu, Z.; Yu, H. T.; Chen, S.; Quan, X. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 2019, 13, 13196–13207.

    CAS  Google Scholar 

  37. Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985–1992.

    CAS  Google Scholar 

  38. Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

    CAS  Google Scholar 

  39. Zhao, D.; Huang, J. C.; Zhong, Y.; Li, K.; Zhang, L. N.; Cai, J. High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 2016, 26, 6279–6287.

    CAS  Google Scholar 

  40. Yang, J.; Li, X. F.; Han, S.; Zhang, Y. T.; Min, P.; Koratkar, N.; Yu, Z. Z. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 2016, 4, 18067–18074.

    CAS  Google Scholar 

  41. Chen, Y.; Xie, X. Q.; Xin, X.; Tang, Z. R.; Xu, Y. J. Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano 2019, 13, 295–304.

    CAS  Google Scholar 

  42. Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

    Google Scholar 

  43. Yang, J.; Li, X. F.; Han, S.; Yang, R. Z.; Min, P.; Yu, Z. Z. High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 2018, 6, 5880–5886.

    CAS  Google Scholar 

  44. VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123–22133.

    CAS  Google Scholar 

  45. Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719–6726.

    CAS  Google Scholar 

  46. Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

    Google Scholar 

  47. Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

    CAS  Google Scholar 

  48. Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Hong, S.; Yu, Z. Z. Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Compos. Part B: Eng. 2014, 67, 564–570.

    CAS  Google Scholar 

  49. Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Dasari, A.; Yu, Z. Z. Three dimensional graphene aerogels and their electrically conductive composites. Carbon 2014, 77, 592–599.

    CAS  Google Scholar 

  50. Zhou, T. Z.; Wu, C.; Wang, Y. L.; Tomsia, A. P.; Li, M. Z.; Saiz, E.; Fang, S. L.; Baughman, R. H.; Jiang, L.; Cheng, Q. F. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.

    CAS  Google Scholar 

  51. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

    CAS  Google Scholar 

  52. Shao, Y.; Jiang, Z. P.; Zhang, Y. J.; Wang, T. Z.; Zhao, P.; Zhang, Z.; Yuan, J. Y.; Wang, H. All-poly(ionic liquid) membrane-derived porous carbon membranes: Scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano 2018, 12, 11704–11710.

    CAS  Google Scholar 

  53. Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.

    Google Scholar 

  54. Li, T.; Liu, H.; Zhao, X. P.; Chen, G.; Dai, J. Q.; Pastel, G.; Jia, C.; Chen, C. J.; Hitz, E.; Siddhartha, D. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134.

    Google Scholar 

  55. Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889–4894.

    CAS  Google Scholar 

  56. Chen, C. J.; Li, Y. J.; Song, J. W.; Yang, Z.; Kuang, Y. D.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756.

    Google Scholar 

  57. Cui, L. F.; Zhang, P. P.; Xiao, Y. K.; Liang, Y.; Liang, H. X.; Cheng, Z. H.; Qu, L. T. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 2018, 30, 1706805.

    Google Scholar 

  58. Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

    Google Scholar 

  59. Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

    CAS  Google Scholar 

  60. Wang, Y. C.; Wang, C. Z.; Song, X. J.; Megarajan, S. K.; Jiang, H. Q. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 2018, 6, 963–971.

    CAS  Google Scholar 

  61. Hua, Z. T.; Li, B.; Li, L. L.; Yin, X. Y.; Chen, K. Z.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. J. Phys. Chem. C 2017, 121, 60–69.

    CAS  Google Scholar 

  62. Kitano, H.; Tada, S.; Mori, T.; Takaha, K.; Gemmei-Ide, M.; Tanaka, M.; Fukuda, M.; Yokoyama, Y. Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood-compatibility. Langmuir 2005, 21, 11932–11940.

    CAS  Google Scholar 

  63. Terada, T.; Maeda, Y.; Kitano, H. Raman spectroscopic study on water in polymer gels. J. Phys. Chem. 1993, 97, 3619–3622.

    CAS  Google Scholar 

  64. Sekine, Y.; Ikeda-Fukazawa, T. Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 2009, 130, 034501.

    Google Scholar 

  65. Okumura, M.; Yeh, L. I.; Myers, J. D.; Lee, Y. T. Infrared spectra of the solvated hydronium ion: Vibrational predissociation spectroscopy of mass-selected H3O+·(H2O)n·(H2)m. J. Phys. Chem. 1990, 94, 3416–3427.

    CAS  Google Scholar 

  66. Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 2004, 304, 1134–1137.

    CAS  Google Scholar 

  67. Jiang, J. C.; Wang, Y. S.; Chang, H. C.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. C. Infrared spectra of H+(H2O)5−8 clusters: Evidence for symmetric proton hydration. J. Am. Chem. Soc. 2000, 122, 1398–1410.

    CAS  Google Scholar 

  68. An, F.; Li, X. F, Min, P.; Liu, P. F.; Jiang, Z. G.; Yu, Z. Z. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 2018, 10, 17383–17392.

    CAS  Google Scholar 

  69. Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 51773008, 51533001, and U1905217) and the Fundamental Research Funds for the Central Universities (No. XK1802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Li or Zhong-Zhen Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, X., Chang, W. et al. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 13, 3048–3056 (2020). https://doi.org/10.1007/s12274-020-2970-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2970-y

Keywords

Navigation