Skip to main content
Log in

A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane

  • Refearch Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mesocrystals, the non-classical crystals with highly ordered nanoparticle superstructures, have shown great potential in many applications because of their newly collective properties. However, there is still a lack of a facile and general synthesis strategy to organize and integrate distinct components into complex mesocrystals, and of reported application for them in industrial catalytic reactions. Herein we report a general bottom-up synthesis of CuO-based trimetallic oxide mesocrystals (denoted as CuO-M1Ox-M2Oy, where M1 and M2 = Zn, In, Fe, Ni, Mn, and Co) using a simple precipitation method followed by a hydrothermal treatment and a topotactic transformation via calcination. When these mesocrystals were used as the catalyst to produce trichlorosilane (TCS) via Si hydrochlorination reaction, they exhibited excellent catalytic performance with much increased Si conversion and TCS selectivity. In particular, the TCS yield was increased 19-fold than that of the catalyst-free process. The latter is the current industrial process. The efficiently catalytic property of these mesocrystals is attributed to the formation of well-defined nanoscale heterointerfaces that can effectively facilitate the charge transfer, and the generation of the compressive and tensile strain on CuO near the interfaces among different metal oxides. The synthetic approach developed here could be applicable to fabricate versatile complicated metal oxide mesocrystals as novel catalysts for various industrial chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sturm, E. V.; Cölfen, H. Mesocrystals: Structural and morphogenetic aspects. Chem. Soc. Rev.2016, 45, 5821–5833.

    Google Scholar 

  2. Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem., Int. Ed.2005, 44, 5576–5591.

    Google Scholar 

  3. Cölfen, H.; Antonietti, M. Mesocrystals and Nonclassical Crystallization; John Wiley & Sons, Ltd: Chichester, 2008.

    Google Scholar 

  4. Ma, M. G.; Cölfen, H. Mesocrystals-applications and potential. Curr. Opin. Colloid Interface Sci.2014, 19, 56–65.

    CAS  Google Scholar 

  5. Tartaj, P.; Amarilla, J. M. Multifunctional response of anatase nanostructures based on 25 nm mesocrystal-like porous assemblies. Adv. Mater.2011, 23, 4904–4907.

    CAS  Google Scholar 

  6. Wu, X. L.; Xiong, S. J.; Liu, Z.; Chen, J.; Shen, J. C.; Li, T. H.; Wu, P. H.; Chu, P. K. Green light stimulates terahertz emission from mesocrystal microspheres. Nat. Nanotechnol.2011, 6, 103–106.

    CAS  Google Scholar 

  7. Wang, T.; Wang, X. R.; LaMontagne, D.; Wang, Z. L.; Wang, Z. W.; Cao, Y. C. Shape-controlled synthesis of colloidal superparticles from nanocubes. J. Am. Chem. Soc.2012, 134, 18225–18228.

    CAS  Google Scholar 

  8. Sun, S. D.; Zhang, X. Z.; Zhang, J.; Wang, L. Q.; Song, X. P.; Yang, Z. M. Surfactant-free CuO mesocrystals with controllable dimensions: Green ordered-aggregation-driven synthesis, formation mechanism and their photochemical performances. CrystEngComm2013, 15, 867–877.

    CAS  Google Scholar 

  9. Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc.2012, 134, 4905–4917.

    CAS  Google Scholar 

  10. Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett.2010, 10, 5006–5013.

    CAS  Google Scholar 

  11. Lim, B.; Lu, X. M.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Lee, E. P.; Xia, Y. N. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett.2008, 8, 4043–4047.

    CAS  Google Scholar 

  12. Huang, X. Q.; Tang, S. H.; Yang, J.; Tan, Y. M.; Zheng, N. F. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc.2011, 133, 15946–15949.

    CAS  Google Scholar 

  13. Querejeta-Fernández, A.; Hernández-Garrido, J. C.; Yang, H. X.; Zhou, Y. L.; Varela, A.; Parras, M.; Calvino-Gámez, J. J.; González-Calbet, J. M.; Green, P. F.; Kotov, N. A. Unknown aspects of self-assembly of PbS microscale superstructures. ACS Nano.2012, 6, 3800–3812.

    Google Scholar 

  14. Zheng, J. S.; Huang, F.; Yin, S. G; Wang, Y. J.; Lin, Z.; Wu, X. L.; Zhao, Y. B. Correlation between the photoluminescence and oriented attachment growth mechanism of CdS quantum dots. J. Am. Chem. Soc.2010, 132, 9528–9530.

    CAS  Google Scholar 

  15. Zhang, P.; Ochi, T.; Fujitsuka, M.; Kobori, Y.; Majima, T.; Tachikawa, T. Topotactic epitaxy of SrTiO3 mesocrystal superstructures with anisotropic construction for efficient overall water splitting. Angew. Chem., Int. Ed.2017, 56, 5299–5303.

    CAS  Google Scholar 

  16. Zhou, L.; Smyth-Boyle, D.; O’Brien, P. A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. J. Am. Chem. Soc.2008, 130, 1309–1320.

    CAS  Google Scholar 

  17. Song, R. Q.; Cölfen, H.; Xu, A. W.; Hartmann, J.; Antonietti, M. Polyelectrolyte-directed nanoparticle aggregation: Systematic morphogenesis of calcium carbonate by nonclassical crystallization. ACS Nano2009, 3, 1966–1978.

    CAS  Google Scholar 

  18. Tachikawa, T.; Majima, T. Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications. NPG Asia Mater.2014, 6, e100.

    CAS  Google Scholar 

  19. Sturm, E. V.; Cölfen, H. Mesocrystals: Past, presence, future. Crystals2017, 7, 207.

    Google Scholar 

  20. Bian, Z. F.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. A nanocomposite superstructure of metal oxides with effective charge transfer interfaces. Nat. Commun.2014, 5, 3038.

    Google Scholar 

  21. O’Sullivan, M.; Hadermann, J.; Dyer, M. S.; Turner, S.; Alaria, J.; Manning, T. D.; Abakumov, A. M.; Claridge, J. B.; Rosseinsky, M. J. Interface control by chemical and dimensional matching in an oxide heterostructure. Nat. Chem.2016, 8, 347–353.

    Google Scholar 

  22. Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater.2012, 11, 103–113.

    CAS  Google Scholar 

  23. Fang, J. X.; Ding, B. J.; Gleiter, H. Mesocrystals: Syntheses in metals and applications. Chem. Soc. Rev.2011, 40, 5347–5360.

    CAS  Google Scholar 

  24. Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ZnO/CuO heterojunction branched nanowires for photoelectro-chemical hydrogen generation. ACS Nano2013, 7, 11112–11120.

    CAS  Google Scholar 

  25. Pan, C. A.; Ma, T. P. Work function of In2O3 film as determined from internal photoemission. Appl. Phys. Lett.1980, 37, 714–716.

    CAS  Google Scholar 

  26. De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Lee Penn, R.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science2015, 349, aaa6760.

    Google Scholar 

  27. Geuchies, J. J.; van Overbeek, C.; Evers, W. H.; Goris, B.; De Backer, A.; Gantapara, A. P.; Rabouw, F. T.; Hilhorst, J.; Peters, J. L.; Konovalov, O. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater.2016, 15, 1248–1254.

    CAS  Google Scholar 

  28. Nazeeruddin, M. K. In retrospect: Twenty-five years of low-cost solar cells. Nature2016, 538, 463–464.

    Google Scholar 

  29. Kamat, P. V. Photovoltaics: Capturing hot electrons. Nat. Chem.2010, 2, 809–810.

    CAS  Google Scholar 

  30. Service, R. F. Perovskite solar cells gear up to go commercial. Science2016, 354, 1214–1215.

    CAS  Google Scholar 

  31. Voorhoeve, R. J. H.; Vlugter, J. C. Mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilanes: III. The catalytically active form of the copper catalyst. J. Catal.1965, 4, 123–133.

    CAS  Google Scholar 

  32. Ji, Y. J.; Jin, Z. Y.; Li, J.; Zhang, Y.; Liu, H. Z.; Shi, L. S.; Zhong, Z. Y.; Su, F. B. Rambutan-like hierarchically heterostructured CeO2-CuO hollow microspheres: Facile hydrothermal synthesis and applications. Nano Res.2017, 10, 381–396.

    CAS  Google Scholar 

  33. Okamoto, M.; Suzuki, E.; Ono, Y. Reaction pathway of formation of methoxysilanes in the reaction of silicon with methanol catalyzed by copper(I) chloride. J. Catal.1994, 145, 537–543.

    CAS  Google Scholar 

  34. Zou, S. Y.; Ji, Y. J.; Li, J.; Zhang, Y.; Jin, Z. Y.; Jia, L. H.; Guo, X. F.; Zhong, Z. Y.; Su, F. B. Novel leaflike Cu-O-Sn nanosheets as highly efficient catalysts for the Rochow reaction. J. Catal.2016, 337, 1–13.

    CAS  Google Scholar 

  35. Liu, H. Z.; Li, J.; Ji, Y. J.; Zhang, Z. L.; Wang, X. G.; Zhong, Z. Y.; Su, F. B. Diffusion-controlled synthesis of Cu-based for the Rochow reaction. Sci. China Mater.2017, 60, 1215–1226.

    CAS  Google Scholar 

  36. Zhang, Y.; Ji, Y. J.; Li, J.; Liu, H. Z.; Hu, X.; Zhong, Z. Y.; Su, F. B. Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction. Nano Res.2018, 11, 804–819.

    CAS  Google Scholar 

  37. Li, J.; Yin, L. L.; Ji, Y. J.; Liu, H. Z.; Zhang, Y.; Gong, X. Q.; Zhong, Z. Y.; Su, F. B. Impact of the Cu2O microcrystal planes on active phase formation in the Rochow reaction and an experimental and theoretical understanding of the reaction mechanism. J. Catal.2018, 361, 73–83.

    CAS  Google Scholar 

  38. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science2016, 354, 1410–1414.

    CAS  Google Scholar 

  39. Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G; Velázquez-Palenzuela, A.; Tripkovic, V.; Schieitz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science2016, 352, 73–76.

    CAS  Google Scholar 

  40. Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science2016, 354, 1031–1036.

    CAS  Google Scholar 

  41. Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K. R.; Crumlin, E. J.; Nerskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc.2017, 139, 8329–8336.

    CAS  Google Scholar 

  42. Mao, J. J.; Chen, W. X.; Sun, W. M.; Chen, Z.; Pei, J. J.; He, D. S.; Lv, C. L.; Wang, D. S.; Li, Y. D. Rational control of the selectivity of a ruthenium catalyst for hydrogenation of 4-nitrostyrene by strain regulation. Angew. Chem., Int. Ed.2017, 56, 11971–11975.

    CAS  Google Scholar 

  43. Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc.2018, 140, 2773–2776.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21878301, 21978299, and 21908224). Z. Z. thanks the kind support of Guangdong Technion Israel Institute of Technology (GTIIT) for the collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjun Ji or Fabing Su.

Electronic Supplementary Material

12274_2020_2934_MOESM1_ESM.pdf

A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ji, Y., Li, J. et al. A general bottom-up synthesis of CuO-based trimetallic oxide mesocrystal superstructures for efficient catalytic production of trichlorosilane. Nano Res. 13, 2819–2827 (2020). https://doi.org/10.1007/s12274-020-2934-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2934-2

Keywords

Navigation